Print-and-Peel Method Creates Microfluidic Devices

Dec 04, 2006

Typically, researchers create microfluidic devices using the same lithographic techniques and tools used to fabricate computer chips. Lithography is expensive and slow, factors that could limit the ultimate utility of microfluidic devices in clinical applications.

Now, investigators at the University of California, Riverside, and Boston University have developed a versatile non-lithographic method capable of printing relatively simple microfluidic devices quickly and inexpensively using a laser printer as the major piece of equipment.

Valentine Vullev, Ph.D., at UC-Riverside, and Guilford Jones II, Ph.D., at Boston University, led the team that developed the method capable of creating channels, chambers, and other microfluidic components in poly(dimethylsiloxane) (PDMS), a biocompatible material used commonly in microfluidic device construction. The investigators reported their work in the Journal of the American Chemical Society.

The investigators use standard computer-aided design software to design the channels, mixing chambers, and detection channels needed for the final device. They then print the design onto polyester transparencies similar to overhead projector sheets that serve as masters to create the actual device.

Though the printed design appears flat, it actually rises off the master, enough so that when PDMS is poured onto the master, cured, and then peeled off the polyester surface, the pattern is reproduced in the resulting thin slab of PDMS. The slab is then placed onto a glass slide, forming the final device.

The investigators found that each master could be used to create five PDMS-based microfluidic devices. Though further research will attempt to increase the number of devices that each master can produce, the investigators note that as it currently stands, their method provides a quick and inexpensive way to test out new microfluidic circuit designs. They also note that their system should be able to create devices readily adaptable for a broad analyzing variety of biological samples.

This work is detailed in a paper titled, “Nonlithographic fabrication of microfluidic devices.” This paper was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Achieving chemical-free natural cosmetics with the power of enzymes

add to favorites email to friend print save as pdf

Related Stories

North Atlantic right whale's prospects tied to climate

23 minutes ago

A pleasant scientific surprise: The North Atlantic right whale population – once projected for extinction – exhibited an unexpected increase in calf production and population size during the past decade.

Finding the 'heart' of an obstacle to superconductivity

33 minutes ago

A team at Cornell and Brookhaven National Laboratory has discovered that previously observed density waves that seem to suppress superconductivity are linked to an electronic "broken symmetry," offering an ...

Heat testing the miniature Aausat 4 satellite

33 minutes ago

The miniature Aausat satellite undergoes repeated temperature variations in a vacuum chamber, cooling the CubeSat to –10°C and heating it to +45°C for more than two weeks. This harsh baptism will make ...

Recommended for you

A tree may have the answers to renewable energy

11 hours ago

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0