Unprecedented efficiency in producing hydrogen from water

Dec 04, 2006

Scientists are reporting a major advance in technology for water photooxidation �using sunlight to produce clean-burning hydrogen fuel from ordinary water. Michael Gratzel and colleagues in Switzerland note that nature found this Holy Grail of modern energy independence 3 billion years ago, with the evolution of blue-green algae that use photosynthesis to split water into its components, hydrogen and oxygen.

Gratzel is namesake for the Gratzel Cell, a more-efficient solar cell that his group developed years ago. Solar cells produce electricity directly from sunlight. Their new research, scheduled for publication in the Dec. 13 issue of the weekly Journal of the American Chemical Society, reports development of a device that sets a new benchmark for efficiency in splitting water into hydrogen and oxygen using visible light, which is ordinary sunlight.

Previously, the best water photooxidation technology had an external quantum efficiency of about 37 percent. The new technology's efficiency is 42 percent, which the researchers term "unprecedented." The efficiency is due to an improved positive electrode and other innovations in the water-splitting device, researchers said.

Source: American Chemical Society

Explore further: Ice cream goes Southern, okra extracts may increase shelf-life

add to favorites email to friend print save as pdf

Related Stories

Solar fuels as generated by nature

15 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

Water and sunlight the formula for sustainable fuel

13 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Water window imaging opportunity

11 hours ago

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

Molecular shuttle speeds up hydrogen production

Aug 14, 2014

An LMU team affiliated with the Nanosystems Initiative Munich (NIM) has achieved a breakthrough in light-driven generation of hydrogen with semiconductor nanocrystals by using a novel molecular shuttle to ...

Copper foam turns carbon dioxide into useful chemicals

Aug 12, 2014

A catalyst made from a foamy form of copper has vastly different electrochemical properties from catalysts made with smooth copper in reactions involving carbon dioxide, a new study shows. The research, by ...

Recommended for you

The fluorescent fingerprint of plastics

14 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

18 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Rice chemist wins 'Nobel Prize of Cyprus'

18 hours ago

Rice University organic chemist K.C. Nicolaou has earned three prestigious international honors, including the Nemitsas Prize, the highest honor a Cypriot scientist can receive and one of the most prestigious ...

Researchers create engineered energy absorbing material

20 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 0