Meaning from chaos

Nov 21, 2005

Transmitting light-based signals by embedding them in chaos doesn't sound like a particularly good idea. But in last week's issue of Nature, Claudio Mirasso and co-workers show otherwise. They have demonstrated that it is possible to send such a signal over a distance of 120 km using a commercial fibre-optic telecommunication network in the metropolitan area of Athens, Greece.

There are several benefits of sending information encoded in chaotic signals. For one thing, the chaos serves as a good encryption system: at face value, the signal looks like pure noise, and it's only when the receiver generates its own chaotic output signal, which can be synchronized with that of the transmitter, that the chaos can be removed to recover the true signal. But also, chaotic 'carrier' signals are broadband signals — they have a wide range of frequencies — which makes them more robust in the face of interference.

The basic idea is that a chaotic light signal is generated by a transmitting laser, and the receiver contains a second laser that can be induced by a feedback circuit to produce a chaotic output synchronized with that of the transmitter. The information-laden optical signal is mixed in with the chaotic signal in the transmitter, but can be decoded by subtracting the synchronized chaos of the receiver.

This process had been demonstrated previously over very short distances in the laboratory, but Mirasso and colleagues have now proved that it will work in the real world. A related News & Views article by Rajarshi Roy accompanies this research.

Source: Nature

Explore further: Controlling core switching in Pac-man disks

add to favorites email to friend print save as pdf

Related Stories

New method speeds up stabilisation of chaotic systems

Sep 30, 2013

(Phys.org) —When chaos threatens, speed is essential; for example, when a pacemaker needs to stabilise an irregular heartbeat or a robot has to react to the information received from its environment. Both ...

Complex activity patterns emerge from simple underlying laws

Jun 28, 2013

A new study from researchers at Uppsala University and University of Havana uses mathematic modeling and experiments on ants to show that a group is capable of developing flexible resource management strategies and characteristic ...

Chaos proves superior to order

May 07, 2013

An international team of physicists, including researchers from the Universities of York and St. Andrews, has demonstrated that chaos can beat order - at least as far as light storage is concerned.

Recommended for you

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

Dec 24, 2014

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Ultrasounds dance the 'moonwalk' in new metamaterial

Dec 23, 2014

Metamaterials have extraordinary properties when it comes to diverting and controlling waves, especially sound and light: for instance, they can make an object invisible, or increase the resolving power of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.