Mars Reconnaissance Orbiter Tweaks Course, Passes Halfway Point

Nov 21, 2005
Artist's concept of Mars Reconnaissance Orbiter en route to Mars. Image credit: NASA/JPL

NASA's Mars Reconnaissance Orbiter successfully fired six engines for about 20 seconds today to adjust its flight path in advance of its March 10, 2006, arrival at the red planet.

Since its Aug. 12 launch, the multipurpose spacecraft has covered about 60 percent of the distance for its trip from Earth to Mars. It will fly about 40-million kilometers (25-million miles) farther before it enters orbit around Mars. It will spend half a year gradually adjusting the shape of its orbit, then begin its science phase. During that phase, it will return more data about Mars than all previous missions combined. The spacecraft has already set a record transmission rate for an interplanetary mission, successfully returning data at 6 megabits per second, fast enough to fill a CD-ROM every 16 minutes.

"Today's maneuver mainly increases the speed to bring us to the target point at just the right moment," said Tung-hanYou, chief of the Mars Reconnaissance Orbiter navigation team at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The intended nudge in velocity is 75 centimeters per second (less than 2 miles per hour). The spacecraft's speed relative to the sun is about 27 kilometers per second (61,000 miles per hour).

Four opportunities for course adjustments were planned into the schedule before launch. Today's, the second, used only the trajectory-correction engines. Each engine produces about 18 newtons (4 pounds) of thrust. The first course adjustment, on Aug. 27, doubled as a test of the six main engines, which produce nearly eight times as much thrust. Those main engines will have the big job of slowing the spacecraft enough to be captured into orbit when it reaches Mars. The next scheduled trajectory adjustment, on Feb. 1, 2006, and another one 10 days before arrival will be used, if necessary, for fine tuning, said JPL's Allen Halsell, the mission's deputy navigation chief.

The Mars Reconnaissance Orbiter mission will examine Mars in unprecedented detail from low orbit. Its instrument payload will study water distribution -- including ice, vapor or liquid -- as well as geologic features and minerals. The orbiter will also support future missions to Mars by examining potential landing sites and by providing a high-data-rate relay for communications back to Earth.

Source: NASA

Explore further: Russia launches British comms satellite into space

add to favorites email to friend print save as pdf

Related Stories

UA-led HiRISE camera spots long-lost space probe on Mars

Jan 16, 2015

The UK-led Beagle 2 Mars Lander, thought lost on Mars since 2003, has been found partially deployed on the surface of the planet, ending the mystery of what happened to the mission more than a decade ago. ...

We've found Beagle2—now where did Philae go?

Jan 19, 2015

Landing a spacecraft on a celestial body, whether it be the moon, Mars or a comet, is not easy. The European Space Agency found out the hard way in 2003 when its robot Beagle2, which was supposed to send ...

New Project Scientist for Mars Rover

Jan 06, 2015

The new project scientist for Mars Rover Curiosity is Ashwin Vasavada of NASA's Jet Propulsion Laboratory, Pasadena, California. Vasavada had been deputy project scientist for NASA's Mars Science Laboratory ...

NASA image: Frosty slopes on Mars

Dec 24, 2014

This image of an area on the surface of Mars, approximately 1.5 by 3 kilometers in size, shows frosted gullies on a south-facing slope within a crater.

Recommended for you

Japan launches new spy satellite

8 hours ago

Japan on Sunday successfully launched a back-up spy satellite, its aerospace agency said, after cancelling an earlier lift-off due to bad weather.

NASA launches satellite to measure soil moisture

8 hours ago

NASA on Saturday launched a new Earth-observing satellite that aims to give scientists high-resolution maps showing how much moisture lies in soil in order to improve climate forecasts.

Planck: Gravitational waves remain elusive

Jan 30, 2015

Despite earlier reports of a possible detection, a joint analysis of data from ESA's Planck satellite and the ground-based BICEP2 and Keck Array experiments has found no conclusive evidence of primordial ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.