Nuclear Magnetic Resonance observes inhibitors bound to enzymes

Nov 22, 2006
Nuclear Magnetic Resonance observes inhibitors bound to enzymes
Bioactive solution structure of the gastrointestinal polypeptide GIP with active regions in red and blue. Credit: Centre for Synthesis and Chemical Biology

A team of researchers led by Professor Paul Malthouse, principal investigator with the Centre for Synthesis and Chemical Biology and UCD Conway Institute, uses state-of-the-art NMR equipment to study a range of biological processes. Insights gained could help in the design of drugs for an array of medical conditions.

Long established as a powerful tool for determining the structure of small molecules, nuclear magnetic resonance (NMR) spectroscopy is now unravelling the secrets of previously inaccessible biological macromolecules, thanks to recent advances in the field. Bigger and more powerful spectrometers with higher magnetic field strengths offer new insights into the reactions happening in our bodies.

Enzymes, like other proteins, were traditionally characterised in the solid state by X-ray crystallography. NMR has a significant advantage as biomolecules can now be studied in their natural environment in bodily fluids and even in cell membranes using solid state NMR.

Inihibited enzymes

Protein-digesting enzymes called proteases play a role in propagating the AIDS virus, in allowing cancers and parasites to move through tissues and in the production of the plaque protein which causes Alzheimer’s disease.

Inhibiting these enzymes is key to treating such diseases. Drugs are designed to target enzymes by slotting into their active sites and shutting them down. Drug design seeks to optimise inhibitor binding, so we need to understand how the inhibitors interact with an enzyme.

"We are synthesising protease inhibitors and using NMR to determine how they interact with specific proteases. By studying these interactions we hope to see ways of optimising an inhibitor’s ability to inhibit the specific protease involved in a given disease,” explains Professor Malthouse.

Designing drugs

It is essential that potent protease inhibitors designed will only target the protease involved in the disease and not those which are essential for our bodies.

"We are currently starting to synthesise and characterise a range of inhibitors which we hope will provide important insights into the development of drugs to treat a range of medical conditions,” continues Professor Malthouse.

New targets for treatment of diabetes and obesity

A group including Professor Malthouse and Dr Chandralal Hewage, NMR scientist at the NMR Centre in UCD Conway Institute, have exploited NMR technology to solve the 3D solution structure of the gastrointestinal polypeptide GIP.

GIP is a hormone that stimulates the secretion of insulin after ingestion of food and has been linked to diabetes and obesity-related diseases.

A 3D picture of the protein was built step by step using a range of NMR experiments and molecular modelling calculations. Two-dimensional NMR spectra revealed information about the connectivities of the atoms, allowing the identity of each amino acid residue to be determined.

Dr Hewage explains the significance of these studies: “Understanding the structural requirements for the biological activity of GIP will help in the design of new drugs for diabetes and obesity related disorders.”

"Proteins are huge molecules but commercially viable drugs need to be a lot smaller both for ease of entry into cells and because of the manufacturing costs involved. Once the structure of the protein is known, the important residues can be identified and a smaller drug molecule synthesised.”

Citation:

Djurdjevic-Pahl, A.; Hewage, C.; Malthouse, J. P. G., Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 2005, 1749, 33.

Alana, I; Parker, J. C.; Gault, V. A; Flatt, P. R.; O'Harte, F. P. M.; Malthouse, J. P. G.; Hewage, C. M., J. Biol. Chem. 2006, 281 (24), 16370.

Source: Centre for Synthesis and Chemical Biology

Explore further: Rare new species of plant: Stachys caroliniana

add to favorites email to friend print save as pdf

Related Stories

How the hummingbird achieves its aerobatic feats

53 minutes ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

'Mind the gap' between atomically thin materials

1 hour ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Seychelles poachers go nutty for erotic shaped seed

2 hours ago

Under cover of darkness in the steamy jungles of the Seychelles thieves creep out to harvest the sizeable and valuable nuts of the famous coco de mer palm, and their activities are threatening its long-term ...

Recommended for you

Seychelles poachers go nutty for erotic shaped seed

2 hours ago

Under cover of darkness in the steamy jungles of the Seychelles thieves creep out to harvest the sizeable and valuable nuts of the famous coco de mer palm, and their activities are threatening its long-term ...

Rare new species of plant: Stachys caroliniana

Nov 21, 2014

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

Mysterious glowworm found in Peruvian rainforest

Nov 21, 2014

(Phys.org) —Wildlife photographer Jeff Cremer has discovered what appears to be a new type of bioluminescent larvae. He told members of the press recently that he was walking near a camp in the Peruvian ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.