Honeybee genome to enable genetic study of social behaviour

Nov 20, 2006
Honeybee genome to enable genetic study of social behaviour
Honeybees are advanced social insects which live in colonies and divide up labour. Credit: iStockphoto/Cre8tive studios

Oxford researchers are part of a global consortium that has sequenced the genome of the honeybee, publishing the results in Nature. It is first social insect to have its genetic instructions decoded, offering exciting possibilities for finding a molecular basis to social behaviour.

Honeybees, along with other advanced social insects like leafcutter ants, exhibit the most extreme form of social behaviour known, living in colonies and dividing up labour. Each bee’s brain has only one millionth of neurons of a human brain, yet they are the only animals apart from primates to use a form of symbolic language: the famous waggledance, which indicates the location of pollen.

Honeybees are also economically important, not only providing honey and wax but pollinating a wide variety of crops.

The sequencing of the honeybee genome provides a toolkit which allows scientists to look for a genetic basis to their complex behaviour.

Researchers expect that the regulation of gene activity (whether genes are turned on or off) will be as important, if not more so, than the genes themselves. Queen bees and worker bees are different types of organism, despite all having the same genome – so different expression of the same genes must be the key.

The Oxford involvement came from Professor David Sattelle and Dr Andrew Jones in the Department of Physiology, Anatomy and Genetics. Their role was to characterise a particular gene family which encodes certain proteins known as ligand-gated ion channels (LGICs). These proteins mediate fast synaptic transmission in the brain, which is the key to many cognitive processes. This will be of particular interest in the honeybee, given the sophistication of its cognitive abilities compared to the size of its brain.

Professor Sattelle and Dr Jones are experts in the role of this gene family in human neurodegenerative diseases such as Alzheimer’s. Studying the genetic regulation of LGIC proteins in the honeybee may shed light on human motor neuron disease, in which faulty expression of LGIC proteins has been implicated.

Source: University of Oxford

Explore further: Diabetes drug found in freshwater is a potential cause of intersex fish

Related Stories

Myth of tolerant dogs and aggressive wolves refuted

45 minutes ago

Dogs are regarded as more tolerant and less aggressive compared to their ancestors, the wolves. Researchers from the Messerli Research Institute at the Vetmeduni Vienna question this image. They show in a ...

Yahoo's 1Q shows company remains mired in revenue rut

2 hours ago

Yahoo is still struggling to boost revenue nearly three years into CEO Marissa Mayer's tenure, magnifying concerns that the Internet company holds little value beyond its lucrative Asian investments.

Recommended for you

York's anti-malarial plant given Chinese approval

Apr 24, 2015

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

Apr 24, 2015

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.