Honeybee genome to enable genetic study of social behaviour

Nov 20, 2006
Honeybee genome to enable genetic study of social behaviour
Honeybees are advanced social insects which live in colonies and divide up labour. Credit: iStockphoto/Cre8tive studios

Oxford researchers are part of a global consortium that has sequenced the genome of the honeybee, publishing the results in Nature. It is first social insect to have its genetic instructions decoded, offering exciting possibilities for finding a molecular basis to social behaviour.

Honeybees, along with other advanced social insects like leafcutter ants, exhibit the most extreme form of social behaviour known, living in colonies and dividing up labour. Each bee’s brain has only one millionth of neurons of a human brain, yet they are the only animals apart from primates to use a form of symbolic language: the famous waggledance, which indicates the location of pollen.

Honeybees are also economically important, not only providing honey and wax but pollinating a wide variety of crops.

The sequencing of the honeybee genome provides a toolkit which allows scientists to look for a genetic basis to their complex behaviour.

Researchers expect that the regulation of gene activity (whether genes are turned on or off) will be as important, if not more so, than the genes themselves. Queen bees and worker bees are different types of organism, despite all having the same genome – so different expression of the same genes must be the key.

The Oxford involvement came from Professor David Sattelle and Dr Andrew Jones in the Department of Physiology, Anatomy and Genetics. Their role was to characterise a particular gene family which encodes certain proteins known as ligand-gated ion channels (LGICs). These proteins mediate fast synaptic transmission in the brain, which is the key to many cognitive processes. This will be of particular interest in the honeybee, given the sophistication of its cognitive abilities compared to the size of its brain.

Professor Sattelle and Dr Jones are experts in the role of this gene family in human neurodegenerative diseases such as Alzheimer’s. Studying the genetic regulation of LGIC proteins in the honeybee may shed light on human motor neuron disease, in which faulty expression of LGIC proteins has been implicated.

Source: University of Oxford

Explore further: Himalayan Viagra fuels caterpillar fungus gold rush

add to favorites email to friend print save as pdf

Related Stories

Bees from the inside out

Jul 08, 2014

It is 1,825 miles from New Haven, Conn., to Austin, Tex., which typically means 30 hours of driving and three nights in motels, not an easy trip for anyone. But for researchers moving from Yale University ...

Ants have an exceptionally 'hi-def' sense of smell

Sep 10, 2012

The first complete map of the ants' olfactory system has discovered that the eusocial insects have four to fives more odorant receptors—the special proteins that detect different odors—than other insects.

Recommended for you

Himalayan Viagra fuels caterpillar fungus gold rush

3 hours ago

Overwhelmed by speculators trying to cash-in on a prized medicinal fungus known as Himalayan Viagra, two isolated Tibetan communities have managed to do at the local level what world leaders often fail to ...

Science casts light on sex in the orchard

6 hours ago

Persimmons are among the small club of plants with separate sexes—individual trees are either male or female. Now scientists at the University of California, Davis, and Kyoto University in Japan have discovered ...

Researchers capture picture of microRNA in action

6 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.