Humans and chimpanzees, how similar are we?

Nov 20, 2006
A chimpanzee

The DNA sequences of humans and chimpanzees are 98.5 percent identical, but now Uppsala University researchers can show that parts of the genetic material are missing in one species or the other.

This means in some cases that humans can produce a protein that the chimpanzee lacks and vice versa. The study, being published in the November issue of the Journal of Molecular Evolution, estimates that the total variation between humans and chimpanzees is rather 6–7 percent.

The chimpanzee, together with the pygmy chimpanzee (the bonobo), is the closest relative to humans still in existence. Even though the similarities between chimpanzees and human are obvious, there are clear differences in body structure, intellect, and behavior, etc. In the more than five million years that have passed since the developmental lines of humans and chimpanzees parted, mutations have altered the genes. A key issue for researchers studying the evolutionary history of humans and chimpanzees is to understand which of these differences have been crucial to the development of the species and their unique characteristics.

Tomas Bergström and his research team at the Department of Genetics and Pathology have compared the DNA sequence from chromosome 21 in humans and chimpanzees to map where the genetic differences are found and what significance this might have. The findings corroborate other studies that indicate that in 1.5 percent of the genetic material a nucleotide (genetic letter) has been replaced by another nucleotide. But the findings also show that more than 5 percent of the genetic material occurs in only one of the species. In both species, DNA has been added or lost. In other words, the total difference is estimated at 6.5 percent. Even though most of the differences occur, as expected, in parts of the genetic material that do not contain genes, the research team has found that pieces of DNA have been added or lost in 13 percent of the genes. Some genes (5 percent) have undergone such major changes that certain proteins can probably not be produced by one of the species.

“It is probable that a species can compensate for this by producing a similar protein from another part of the gene, but some of these differences have clearly been crucial to the development of the species,” says Tomas Bergström.

Source: Uppsala Universitet

Explore further: Campaigners say protected birds in danger in Malta

add to favorites email to friend print save as pdf

Related Stories

New method confirms humans and Neanderthals interbred

Apr 08, 2014

Technical objections to the idea that Neanderthals interbred with the ancestors of Eurasians have been overcome, thanks to a genome analysis method described in the April 2014 issue of the journal Genetics. The te ...

New technique for identifying gene-enhancers

Mar 24, 2014

An international team led by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a new technique for identifying gene enhancers - sequences of DNA that act to amplify the ...

Large testicles are linked to infidelity

Jan 29, 2014

There is a clear correlation between the size of the testicles of male primates and the proneness to infidelity of females. Learn more about sex, sperm and infidelity at the anniversary exhibition Sexus.

Human heart disease recently found in chimpanzees

Aug 29, 2013

While in the past century there have been several documented examples of young, healthy athletes who have died suddenly of heart disease during competitive sporting events, a new study finds that this problem ...

Recommended for you

Yurok Tribe to release condors in California

1 hour ago

The Yurok Tribe has signed agreements with state and federal agencies that will lead to the first release of captive-bred condors into Northern California's Redwood Coast.

Genetic legacy of rare dwarf trees is widespread

2 hours ago

Researchers from Queen Mary University of London have found genetic evidence that one of Britain's native tree species, the dwarf birch found in the Scottish Highlands, was once common in England.

Genome yields insights into golden eagle vision, smell

14 hours ago

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Genetic code of the deadly tsetse fly unraveled

15 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

User comments : 0

More news stories

Genetic legacy of rare dwarf trees is widespread

Researchers from Queen Mary University of London have found genetic evidence that one of Britain's native tree species, the dwarf birch found in the Scottish Highlands, was once common in England.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.