Fullerenes and nanotubes are back in the news

May 12, 2004
Nanotube Fulleren

Shaped carbon molecules are known officially as fullerenes and unofficially as ''buckyballs''. The news blurbs about Carbon-50, self-assemble nanotubes and fullerene transistors are circulating around the Net. But is this all still about a technology ''not for another few years yet'' or ''we are definitely getting closer''?

Nanotubes self-assemble into circuit elements EETimes

Nanotubes measuring just 100 atoms in diameter have been created from designer molecules that were customized to self-assemble into angstrom-sized circuit elements, according to researchers at Purdue University. Professor Hicham Fenniri's research group developed the nanotube "parent" molecules, which self-assemble in water first into tiny rings. The rings then snap together into long tubes. The outside of the seed molecules harbor "hooks" on which to hang other molecules, which functionalize the resulting nanotube for a specific electronic application.

We have one component of a circuit now — the wire — but the other components, like transistors and transducers, are not all going to be made from the same material," said Fenniri. Instead, "we will use nanolithography to basically write on a substrate, but the ink will be nanotubes.

C60 increases gain in organic-metal-semiconductor transistors PhysOrg

As we reported earlier, the group of scientists from Brazil and UK implemented C60 to metal-base transistor technology. They used evaporated C60 as the emitter in a vertical transistor structure with Au base and Si collector. The proportion of emitted electrons that overcome the barrier is measured as at least 0.99. This metal-base transistor is easy to fabricate as it does not involve wafer bonding or require perfect semiconductor-on-metal growth.

Metal-base transistors (MBT) with C60 as the emitter material solve problems of inorganic MBTs, as having higher current gains, as well as being easier to fabricate.

High-speed nanotubes PhysicsWeb

Scientists have demonstrated, for the first time, that transistors made from single-walled carbon nanotubes can operate at extremely fast microwave frequencies, opening up the potential for better cell phones and much faster computers, perhaps as much as 1,000 times faster. The findings, reported in the April issue of Nano Letters, add to mounting enthusiasm about nanotechnology's revolutionary potential. "Since the invention of nanotube transistors, there have been theoretical predictions that they can operate very fast," said Peter Burke, a professor of electrical engineering and computer science at the University of California, Irvine, and lead author of the paper. At present, the device only works at 4 kelvin but Burke is confident that it can be made to operate at room temperature. Moreover, he believes that the transistor could be made to switch at even higher frequencies. "I estimate that the theoretical speed limit for these transistors should be terahertz (1012 Hertz)," he said.

Anyhow, this all is obviously still in the proof of concept stage, but when you add it to the self-assembling nanotubes, organic MBT’s, and other remarkable properties already reported, we're definitely getting closer. At the same time aren’t we running ahead of reality, forgetting about economic context? Will fullerene technology be as cost-effective as silicon technology nowadays? These questions have still to be answered.

Explore further: Physicists design quantum switches which can be activated by single photons

add to favorites email to friend print save as pdf

Related Stories

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Cooling microprocessors with carbon nanotubes

Jan 22, 2014

"Cool it!" That's a prime directive for microprocessor chips and a promising new solution to meeting this imperative is in the offing. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

11 hours ago

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

User comments : 0

More news stories

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...