Transmission - Grains of insight into the grid

Aug 13, 2004

The way growing piles of sand behave -- with bursts of energy that result in large and small avalanches -- has served as a model for fusion researchers seeking insight into the way magnetically confined plasmas behave in fusion reactors. The same research into self-organizing systems has also lent itself to predicting the reaction of electric power grids to increasing power demand or system anomalies.

One year after the northeastern blackout drew attention to their work, Oak Ridge National Laboratory fusion researcher Ben Carreras, David Newman of the University of Alaska and Ian Dobson of Wisconsin University are continuing their power grid modeling research. Instead of being strictly an engineering challenge, the researchers now see the nation's electric power grid infrastructure driven by a complex combination of variables as diverse as rising demand, conflicting subsystems and societal pressures. Without a broader understanding of the interaction of those forces, a sandcastle power grid will be hard pressed to accommodate the rising tide of power demand.

Source: DOE/Oak Ridge National Laboratory

Explore further: Discovery sheds light on nuclear reactor fuel behavior during a severe event

add to favorites email to friend print save as pdf

Related Stories

Avoiding blackouts as demand for electricity grows

Nov 04, 2014

It is impossible to imagine the modern world without electricity. We are dependent on an uninterrupted source of power and when it fails the consequences are devastating. Over the past decade there have been 50 significant ...

Recommended for you

New technique allows ultrasound to penetrate bone, metal

16 hours ago

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

Taming the Boltzmann equation

20 hours ago

Physicists at Ludwig Maximilian University of Munich, Germany, have developed a new algorithm that is capable of solving the Boltzmann equation for systems of self-propelled particles. The new method also ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.