Study contributes to research addressing malnutrition and iron deficiency

Nov 02, 2006

Dartmouth biologists are leading a research team that has learned where and how some plant seeds store iron, a valuable discovery for scientists working to improve the iron content of plants. This research helps address the worldwide issue of iron deficiency and malnutrition. Their findings were published online on Nov. 2 at Science Express, the advance publication site for the journal Science.

The team found that iron is stored in the developing vascular system of the seed of Arabidopsis, a model plant used in research; in particular, iron is stored in the vacuole, a plant cell's central storage site. The researchers also learned that this localization is dependent on a protein called VIT1, shown to transport iron into the vacuole.

Dartmouth Professor of Biological Sciences Mary Lou Guerinot, the principal investigator on the study, says, "Iron deficiency is the most common human nutritional disorder in the world today, afflicting more than three billion people worldwide. Most of these people rely on plants for their dietary iron. However, plants are not high in iron, and the limited availability of iron in the soil can limit plant growth. Our study certainly suggests that iron storage in the vacuole is a promising and, before now, largely unexplored target for increasing the iron content of seeds. Such nutrient-rich seed would benefit both human health and agricultural productivity."

The researchers combined traditional mutant analysis (turning on and off the VIT1 protein) with a powerful X-ray imaging technique to create a map of where iron is localized in the seed. Guerinot was surprised by the finding because most studies on iron storage focus on the protein ferritin. This paper reveals how important it is to look beyond ferritin to understand how iron is stored by plants. The researchers say that their study suggests that the stored iron in the vacuole is an important source of iron for developing seedlings. Seedlings that do not express the VIT1 protein grow poorly when iron is limited.

"We have demonstrated the usefulness of synchrotron X-ray fluorescence microtomography to look inside a seed," says Guerinot. "This technique is noninvasive and requires no sample preparation. We think our work will open the way for many more biologists to use this technique to examine the spatial distribution of metals in samples of interest." The imaging was carried out at the Department of Energy's National Synchrotron Light Source at Brookhaven National Laboratory.

Source: Dartmouth College

Explore further: Drought causes birds to nest later, reducing nesting success

add to favorites email to friend print save as pdf

Related Stories

New cell component important to tea and wine-making

Sep 10, 2013

Scientists have discovered where plants build tannins, complex chemicals used by plants for defence and protection. The source is the tannosome, a newly discovered organelle that is found in most land plants.

How plants absorb the perfect quantity of minerals

Apr 12, 2012

In order to survive, plants should take up neither too many nor too few minerals from the soil. New insights into how they operate this critical balance have now been published by biologists at the Ruhr-Universität ...

Recommended for you

Devising a way to count proteins as they group

2 hours ago

A new study from Indiana University-Purdue University Indianapolis and University of California Berkeley researchers reports on an innovative theoretical methodology to solve "the counting problem," which is key to understanding ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.