Lasers improve scientists’ understanding of complex proteins

Nov 14, 2005
Lasers improve scientists’ understanding of complex proteins

By shooting lasers at an RNA polymerase (RNAP) and a strand of DNA, scientists have learned a critical component of how a complex protein develops.
Using a system called fluorescence resonance energy transfer (FRET) on a single molecule, a researcher at the Lawrence Livermore National Laboratory’s Physical Biosciences Institute (PBI) in collaboration with UCLA scientists found that the procedure that regulates genes in a strand of DNA is a single process.

Image: A transcribing T7 RNA polymerase initiation complex. (BioInfo Bank)

Earlier studies done with less precision resulted in scientists believing that the beginning and end phases of RNAP copying a DNA strand into RNA were two different processes.

Using FRET, however, the recent study suggests that “there is no mechanistic difference between the start and finish,” said Ted Laurence of Livermore’s PBI.

RNAP is the molecular machine that serves as a gene transcription tool. When it attaches to a strand of DNA, RNAP transcribes genes to RNA, which then is translated into a protein.

FRET allows scientists to measure distances between two single molecules – a donor and an acceptor – using fluorescence. Molecules have to be less than 8-10 nanometers apart for a FRET to occur.

Using a laser process called ALEX (alternating laser excitation), developed by Laurence, the team looked into the energy transfer of a donor molecule on an RNAP to an acceptor molecule on a strand of DNA.

This was the first time a scientific team was able to confirm that the transcription initiation factor remains on an RNAP throughout the transcription process.

“Because this happens all in one phase, it may be that transcription is regulated even after starting,” Laurence said.

The research appears in the Nov. 11 issue of the journal Molecular Cell.

Source: Lawrence Livermore National Laboratory

Explore further: Relaxing DNA strands by using nano-channels

add to favorites email to friend print save as pdf

Related Stories

Physicists tease out twisted torques of DNA

Jun 28, 2013

Like an impossibly twisted telephone cord, DNA, the molecule that encodes genetic information, also often finds itself twisted into coils. This twisting, called supercoiling, is caused by enzymes that travel ...

Physics of gene transcription unveiled

May 14, 2010

(PhysOrg.com) -- A research team has made precise measurements of where and how RNA polymerase encounters obstacles while it reads nucleosomal DNA.

Backtracking on DNA

Jun 23, 2009

(PhysOrg.com) -- Accuracy is essential for life, so in converting the information stored in DNA into a form in which it can be used, a high level of precision is required. Dr Tanniemola Liverpool from the ...

Recommended for you

Relaxing DNA strands by using nano-channels

15 hours ago

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 0