Turning a nuclear spotlight on illegal weapons material

Oct 27, 2006

Researchers at the National Institute of Standards and Technology (NIST) and Oak Ridge National Laboratory (ORNL) have demonstrated that they can cheaply, quickly and accurately identify even subnanogram amounts of weapon-grade plutonium and uranium. Their work was presented in September at the national meeting of the American Chemical Society.

Worldwide, most nuclear facilities generate electricity or produce neutrons for peaceful research--but they also can create materials for nuclear weapons. International inspectors routinely tour such facilities, taking cloth wipe samples of equipment surfaces for forensic analysis of any potential weapon-grade materials in suspicious locations. In particular, they search for specific uranium or plutonium isotopes capable of setting off a nuclear explosion.

NIST chemists working at the NIST Center for Neutron Research have applied a highly sensitive technique called delayed neutron activation analysis to improve such efforts, the NIST and ORNL researchers report. The center includes a specially designed research neutron source, which bathes material samples with low-energy neutrons. Next, those samples rapidly go into a barrel-shaped instrument, embedded with neutron detectors, which precisely count the neutrons emitted over a short period of time. The neutron count acts as a unique signature of special nuclear material. In their study, the scientists used this technique to successfully identify trace amounts of uranium-235 and plutonium-239 in less than three minutes.

"We're emphasizing the technique now because world events have made it more critical to detect traces of nuclear materials, which is technically very challenging," says analytical chemist Richard Lindstrom, co-author of the ACS presentation. This tool also complements a variety of other sophisticated methods used by NIST researchers working on homeland security.

The low detection levels are due in part to the use of the NIST neutron source, which is particularly well designed for this task. The technique can detect weapon-grade material just four microns in diameter - less than a tenth the size of a human hair. The technique could be used to find subtle, lingering radioactive material in samples taken during inspection of trucks or cargo shipping containers, for instance. Beyond forensics, NIST uses the technique for measurements of isotopes in research and for industrial projects. The team is now working to automate the counting instrument and simplifying its operation for rapidly handling large batches of samples.

Citation: R. M. Lindstrom, D.C. Glasgow and R.G. Downing. Trace fissile measurement by delayed neutron activation analysis at NIST. Presented at the 232nd ACS National Meeting, San Francisco, Calif., Sept 10, 2006.

Source: NIST

Explore further: New material steals oxygen from the air

add to favorites email to friend print save as pdf

Related Stories

Toward new precision in measuring the neutron lifetime

Feb 05, 2014

(Phys.org) —A team of PML scientists, with collaborators elsewhere, has achieved a five-fold reduction in the dominant uncertainty in an experiment that measured the mean lifetime of the free neutron (exceptionally ...

New kind of microscope uses neutrons

Oct 04, 2013

Researchers at MIT, working with partners at NASA, have developed a new concept for a microscope that would use neutrons—subatomic particles with no electrical charge—instead of beams of light or electrons ...

NIST sensor improvement brings analysis method into mainstream

Dec 21, 2011

(PhysOrg.com) -- An advance in sensor design by researchers at the National Institute of Standards and Technology and the University of Waterloo's Institute of Quantum Computing (IQC) could unshackle a powerful, yet high-maintenance ...

R&D 100 Award for new NIST/UMD neutron detector

Jul 10, 2008

A new ultrasensitive, high bandwidth neutron detector developed by the National Institute of Standards and Technology (NIST) and the University of Maryland (UMD) will receive one of this year's "R&D 100 Awards," ...

Neutron probe yields break in superconductor mystery

Feb 01, 2007

U.S. and Canadian researchers report a major step toward solving a two-decades-old materials science mystery and progress toward the ultimate goal of engineering materials optimized for magnetic and electric properties.

Recommended for you

New material steals oxygen from the air

3 hours ago

Researchers from the University of Southern Denmark have synthesized crystalline materials that can bind and store oxygen in high concentrations. Just one spoon of the substance is enough to absorb all the ...

Driving cancer cells to suicide

4 hours ago

Ludwig Maximilian University of Munich researchers report that a new class of chemical compounds makes cancer cells more sensitive to chemotherapeutic drugs. They have also pinpointed the relevant target ...

Neutral self-assembling peptide hydrogel

7 hours ago

Self-assembling peptides are characterized by a stable β-sheet structure and are known to undergo self-assembly into nanofibers that could further form a hydrogel. Self-assembling peptide hydrogels have ...

User comments : 0