Scientists to Test Toxicity of Nanomaterials

Nov 11, 2005
Scientists Test Toxicity of Nanomaterials

Materials science is getting small – on the order of the atomic scale. Fibers, spheres, crystals and films 1,000 times thinner than human hair hold the promise of producing faster cars and planes, more powerful computers and satellites, better microchips and batteries. Inventors even plan to use nanomaterials to make artificial muscle, military armor and medicines. Nanomaterials can already be found in sunscreens, concrete, tennis rackets, car bumpers and wrinkle-resistant clothes. But are they safe?

Through a new four-year, $1.8-million National Science Foundation grant, Brown University scientists are testing a variety of nanomaterials to see how they interact with human and animal cells. The aim: Find out which sizes, shapes, compounds and coatings damage or kill cells. That information can be used to manufacture non-toxic types.

“The question isn’t whether nanomaterials are good or bad,” said Robert Hurt, a Brown professor of engineering and the lead investigator on the project. “The question is which are toxic? Under what conditions? And can we make and purify them in different ways to avoid toxicity – to make ‘green’ nanomaterials?”

The grant supports important early work at Brown in an emerging field of environmental health.

According to the Institute of Medicine, the federal government last year invested nearly $1 billion in nanotechnology, yet little is known about how engineered nanoparticles affect human health. To fill the knowledge gap, the National Science Foundation and other government agencies are spending a total of $38.4 million this fiscal year in research on the environmental, health and safety aspects of nanomaterials. A journal, Nanotoxicology, was launched this year along with the first database of research on the biological and environmental impacts of nanoparticles.

Hurt said nanoparticles have captured the imaginations of materials scientists and chemists because they have desirable properties such as extreme strength or outstanding electrical or thermal conductivity. However, a small number of animal studies show that some nanomaterials can damage brain or lung tissue or block blood flow.

To better understand which materials are toxic and which are safe, the Brown project takes a multidisciplinary approach.

In the Division of Engineering, Hurt and colleague Gregory Crawford are creating carbon nanotubes, fibers and spheres – all popular in electronics – by the billions. Crawford is arranging the materials on glass slides based on size, shape and chemical composition, a novel “chip” platform that will allow for precise, systematic testing.

The chips will then head to Jeffrey Morgan and Agnes Kane at Brown Medical School.

Morgan, a biologist and tissue engineer, will test the materials’ affect on lab-grown human skin cells. Kane, a pathologist, will test the materials on macrophages, cells that defend against foreign invaders, culled from mice. Both will check to see if cells die, incur DNA damage or trigger exaggerated immune defenses.

Phil Brown, professor of sociology and environmental studies, will explore the social and ethical implications of nanotechnology and how to communicate health exposure risks to the public, including faculty and students who work with nanomaterials in campus labs.

Source: Brown University

Explore further: 'Nanomotor lithography' answers call for affordable, simpler device manufacturing

add to favorites email to friend print save as pdf

Related Stories

Researchers optimizing graphene for various applications

May 14, 2014

(Phys.org) —A material cannot get any thinner. Graphene consists of just one layer of carbon atoms. However, that's not the only reason materials scientists are interested in this material: they're primarily ...

'Milking' brown recluse spiders for silk

Mar 10, 2014

(Phys.org) —Rabbit, a brown-recluse spider, is fastened to the proverbial treadmill in Hannes Schniepp's Nanomaterials & Imaging lab. She is restrained but relaxed. Her spinnerets are churning out exquisite ...

Research and applications of iron oxide nanoparticles

Feb 26, 2014

From the mysteries of producing red colors in traditional Japanese Bizen stoneware to iron-oxidizing bacteria for lithium ion batteries, Professor Jun Takada is at the forefront of research on innovative ...

Jagged graphene edges can slice into cell membranes

Jul 10, 2013

(Phys.org) —A collaboration of biologists, engineers, and material scientists at Brown University has found that jagged edges of graphene can easily pierce cell membranes, allowing graphene to enter the ...

Recommended for you

A new way to convert light to electrical energy

9 hours ago

The conversion of optical power to an electrical potential is of general interest for energy applications, and is typically accomplished by optical excitation of semiconductor materials. A research team has developed a new ...

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.