Scientists Gain New Insights Into 'Frozen' Methane Beneath Ocean Floor

Nov 10, 2005

An international team of scientists supported by the Integrated Ocean Drilling Program (IODP) has completed a unique research expedition aimed at recovering samples of gas hydrate, an ice-like substance hidden beneath the seafloor off Canada's western coast.

Gas hydrate, a mixture of water and mostly methane, is believed to occur under the world's oceans in great abundance, but it quickly "melts" once removed from the high pressure and cold temperatures of its natural environment, making it very challenging to recover and analyze.

"We're interested in gas hydrate because we believe these deposits have played an important role in ancient global climate change," explains Michael Riedel of Natural Resources Canada's Geological Survey of Canada, IODP Expedition 311's co-chief scientist.

"This expedition is the first to explore a transect of deep drilling research sites across the Cascadia Continental Margin and will yield new data that will help us understand the deep origin of the methane that composes the gas hydrate, how the methane is transported into the sediments where gas hydrate exists, and how methane is eventually released into the ocean, and possibly, into the atmosphere where it could impact climate."

"What we've found will fundamentally change how we investigate the impact of gas hydrate deposits," confirms IODP co-chief scientist Timothy S. Collett of the U.S. Geological Survey, Denver, Colo.

"Expedition 311 has shown that the occurrence of gas hydrate is much more complex than predicted. Instead of finding gas hydrate concentrated in one layer," he explains, "near the base of the zone where it is stable, higher concentrations of gas hydrate were found within coarse-grained sand layers throughout core samples from most of the sites drilled."

Scientists and engineers aboard IODP's U.S.-sponsored research drilling vessel, the JOIDES Resolution, drilled hundreds of meters below the seafloor and successfully retrieved gas hydrate in long sediment cores.

More than 1,200 meters of sediment core samples were recovered from beneath the seafloor during this 37-day expedition. Once core samples are brought onto the ship, marine laboratory specialists work quickly to scan them using various sensors and computers to find the gas hydrate, which is unstable at the surface.

Most previous research on the Cascadia Continental Margin has focused on conducting detailed, remote sensing studies to image gas hydrate in the oceanic sediments. In past research efforts, gas hydrate has been recovered from the Cascadia Margin area using shallow sediment coring systems that allowed only the upper few meters of sediment to be sampled.

Among the discoveries of Expedition 311 was a thick section of gas hydrate lying near the seafloor surface beneath an active vent site, known as the 'bull's-eye vent,' where methane gas naturally seeps from the seafloor.

This vent site is one of many similar sites observed along the Cascadia Margin and scientists are just starting to understand their role in the overall history of the margin. The episodic nature of the venting and the potential link to earthquake activity, as well as the possible impact on gas release into the ocean and atmosphere, will be researched for many years to come, when future drill site observatories will be linked with the NEPTUNE cable observatory system.

Scientists first became interested in gas hydrate in 1982, when it was discovered during a research leg of the Deep Sea Drilling Project, one of two U.S.-sponsored scientific drilling programs that predate IODP. The samples were retrieved from the Middle American Trench region, off the Pacific coast of Guatemala. Since then, gas hydrate has been the focus of numerous studies.

Copyright 2005 by Space Daily, Distributed United Press International

Explore further: ESO image: A study in scarlet

add to favorites email to friend print save as pdf

Related Stories

China looks to 'combustible ice' as a fuel source

Mar 12, 2010

(PhysOrg.com) -- Buried below the tundra of China’s Qinghai-Tibet Plateau is a type of frozen natural gas containing methane and ice crystals that could supply energy to China for 90 years. China discovered ...

Natural gas supplies could be augmented with methane hydrate

Jan 29, 2010

Naturally occurring methane hydrate may represent an enormous source of methane, the main component of natural gas, and could ultimately augment conventional natural gas supplies, says a new congressionally mandated report ...

Methane hydrates and global warming

Jan 02, 2014

Methane hydrates are fragile. At the sea floor the ice-like solid fuel composed of water and methane is only stable at high pressure and low temperature. In some areas, for instance in the North Atlantic ...

Recommended for you

ESO image: A study in scarlet

57 minutes ago

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

16 hours ago

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Vegetables on Mars within ten years?

22 hours ago

The soil on Mars may be suitable for cultivating food crops – this is the prognosis of a study by plant ecologist Wieger Wamelink of Wageningen UR. This would prove highly practical if we ever decide to ...

NASA Cassini images may reveal birth of a Saturn moon

22 hours ago

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

NASA Cassini images may reveal birth of a Saturn moon

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.