Does missing gene point to nocturnal existence for early mammals?

Oct 11, 2006

A gene that makes cells in the eye receptive to light is missing in humans, researchers have discovered. They say that whereas some animals like birds, fish and amphibians have two versions of this photoreceptor, mammals, including humans, only have one.

The findings – published in the Public Library of Science journal PLoS Biology – reveal how our experience of the light environment may be impoverished compared to other vertebrates and fits with the suggestion that early mammals were at one time wholly nocturnal creatures.

“The classical view of how the eye sees is through photoreceptive cells in the retina called rods and cones,” explained Dr Jim Bellingham, who led the research at The University of Manchester.

“But, recently, a third photoreceptor was discovered that is activated by a gene called melanopsin. This melanopsin photoreceptor is not linked to sight but uses light for non-visual processes, such as regulating our day-night rhythms and pupil constriction.”

Although the melanopsin gene is present in all vertebrates, the version in mammals was unusually different to that found in fish, amphibians and birds.

“At first, we put this genetic anomaly between mammals and other vertebrates down to evolutionary differences,” said Dr Bellingham, who is based in the Faculty of Life Sciences.

“But we have now learnt that other vertebrates have a second melanopsin gene – one that matches the one found earlier in mammals and humans. The first melanopsin gene found in the other classes of vertebrates does not exist in mammals.”

It is not yet clear how the functions of the two melanopsins differ but having different cone genes or ‘opsins’ allows vertebrates to detect different wavelengths of light and allows them to see colour.

The Manchester team now hope to find out whether the two melanopsin genes in non-mammals play similar or different roles in non-visual light detection and so provide clues as to the implications of only having one melanopsin gene.

“The two genes and their associated proteins have been maintained in vertebrates for hundreds of millions of years, only for one of them to be lost in mammals.

“We are keen to discover why this might have happened – perhaps the early mammals were at one stage nocturnal and had no need for the second gene, for instance. We also want to find out what losing one of these genes means for humans.”

Source: University of Manchester

Explore further: Researchers collect soil samples from around the globe in effort to conduct fungi survey

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Parasitic worm genomes: largest-ever dataset released

17 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

17 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

21 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.