Scientists use an 'ice lolly' to find polar bacteria in their own back yard

Sep 28, 2006

To study the bacteria which survive in extreme cold, scientists no longer have to go to extreme environments, such as Antarctic lakes and glaciers. Bacteria previously isolated from polar climates, and have properties which allow them to survive in extreme cold, have been isolated from soil in temperate environments.

Professor Virginia Walker and her colleagues at Queen’s University, Canada, have developed a technique to isolate bacteria which have properties to interact with, and modify, ice. This technique involved the formation of an ‘ice finger’ (or lolly) to select for bacteria which will adsorb to ice. These bacteria were then cultured and identified using their DNA.

The bacteria can modify ice and water in a number of ways. One of the species identified, Chryseobacterium sp., demonstrated Ice Recrystallisation Inhibition (IRI), a property that can be exploited in the production of ice-cream to prevent it from recrystallising and becoming ‘crunchy’.

Other species isolated in this study promote the formation of ice crystals at temperatures close to melting, a property which is useful in the production of artificial snow.

Pseudomonas borealis is one species which is not only ice-forming, it is also thought to be tolerant to cold and could therefore have advantages for snow-making in artificial environments such as ski centres and in waste-water purification.

“Selecting for rare microbes that seem to stick to ice has been fun, but now the real work begins to find out what genes are responsible for this attraction” Said Professor Walker.

These findings will decrease the costs involved in the further study of such bacteria and their properties, as scientists will no longer need expeditions to the poles in order to isolate the bugs; they can find them in their own backyards.

Citation: Ice-active characteristics of soil bacteria selected by ice-affinity, by Sandra L. Wilson, Deborah L. Kelley and Virginia K. Walker. Published in Environmental Microbiology, Volume 8, Issue 10, pg. 1816 – 1824, October 2006

Source: Blackwell Publishing

Explore further: Full-annual-cycle models track migratory bird populations throughout the year

add to favorites email to friend print save as pdf

Related Stories

'Onion' vesicles for drug delivery developed

Jun 10, 2014

One of the defining features of cells is their membranes. Each cell's repository of DNA and protein-making machinery must be kept stable and secure from invaders and toxins. Scientists have attempted to replicate ...

Recommended for you

Activating genes on demand

6 hours ago

When it comes to gene expression - the process by which our DNA provides the recipe used to direct the synthesis of proteins and other molecules that we need for development and survival - scientists have ...

Metabolic path to improved biofuel production

7 hours ago

Researchers with the Energy Biosciences Institute (EBI), a partnership that includes the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, have found a way ...

Deadly frog fungus dates back to 1880s, studies find

9 hours ago

A deadly fungus responsible for the extinction of more than 200 amphibian species worldwide has coexisted harmlessly with animals in Illinois and Korea for more than a century, a pair of studies have found.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.