Scientists use an 'ice lolly' to find polar bacteria in their own back yard

Sep 28, 2006

To study the bacteria which survive in extreme cold, scientists no longer have to go to extreme environments, such as Antarctic lakes and glaciers. Bacteria previously isolated from polar climates, and have properties which allow them to survive in extreme cold, have been isolated from soil in temperate environments.

Professor Virginia Walker and her colleagues at Queen’s University, Canada, have developed a technique to isolate bacteria which have properties to interact with, and modify, ice. This technique involved the formation of an ‘ice finger’ (or lolly) to select for bacteria which will adsorb to ice. These bacteria were then cultured and identified using their DNA.

The bacteria can modify ice and water in a number of ways. One of the species identified, Chryseobacterium sp., demonstrated Ice Recrystallisation Inhibition (IRI), a property that can be exploited in the production of ice-cream to prevent it from recrystallising and becoming ‘crunchy’.

Other species isolated in this study promote the formation of ice crystals at temperatures close to melting, a property which is useful in the production of artificial snow.

Pseudomonas borealis is one species which is not only ice-forming, it is also thought to be tolerant to cold and could therefore have advantages for snow-making in artificial environments such as ski centres and in waste-water purification.

“Selecting for rare microbes that seem to stick to ice has been fun, but now the real work begins to find out what genes are responsible for this attraction” Said Professor Walker.

These findings will decrease the costs involved in the further study of such bacteria and their properties, as scientists will no longer need expeditions to the poles in order to isolate the bugs; they can find them in their own backyards.

Citation: Ice-active characteristics of soil bacteria selected by ice-affinity, by Sandra L. Wilson, Deborah L. Kelley and Virginia K. Walker. Published in Environmental Microbiology, Volume 8, Issue 10, pg. 1816 – 1824, October 2006

Source: Blackwell Publishing

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

'Onion' vesicles for drug delivery developed

Jun 10, 2014

One of the defining features of cells is their membranes. Each cell's repository of DNA and protein-making machinery must be kept stable and secure from invaders and toxins. Scientists have attempted to replicate ...

Methane-munching microorganisms meddle with metals

Nov 11, 2013

On the continental margins, where the seafloor drops hundreds of meters below the water's surface, low temperatures and high pressure lock methane inside ice crystals. Called methane hydrates, these crystals ...

A new formula for spray-drying milk

Oct 22, 2013

Spray-drying methods for milk based products such as baby formula or other powdered milks could be improved according to chemical engineers at the University of Sydney who have analysed current processes.

Recommended for you

Dwindling wind may tip predator-prey balance

23 hours ago

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0