Breakthrough in Silicon Technology: Wafer-Level Strained Silicon Technology Announced by SiGen

Aug 11, 2004
Strained Silicon

Silicon Genesis Corporation (SiGen) announced today that it has successfully developed a new wafer-level strained substrate technology, called “Next-Generation Strain” or NGS. NGS features uniaxial strain instead of biaxial strain and avoids the mobility degradation and the high defect levels associated with current silicon-germanium (SiGe) based biaxially strained silicon or strained silicon on insulator (s-SOI). Several chip manufacturers, including Intel and Texas Instruments, have successfully demonstrated the significant benefits of uniaxial strain at the transistor level. Intel pioneered the use of uniaxial strain-enhanced transistor technology and is already using it in its 90nm process. Until today, only local transistor-level uniaxial strain has been available. SiGen is changing that with the introduction of the NGS wafer-level strained substrate.

Francois J. Henley, President and CEO of Silicon Genesis, said, "We are very excited about our new global uniaxial strain technology. This new material offers the potential for significant mobility enhancements over SiGe-based biaxial strain wafer technologies and is compatible with local straining approaches since the strains are additive. It also features very low defect levels due to SiGen’s use of its proprietary low-temperature processing technology. It can be directly integrated on silicon as an “epi-like” strained bulk wafer or on an insulator as a strained silicon-on-insulator wafer (s-SOI). The incremental production costs are expected to be significantly lower than biaxial technologies because it avoids the costly steps of growing and relaxing thick silicon-germanium layers”.

Dr. Scott Thompson, Associate Professor of the University of Florida’s Department of Electrical and Computer Engineering and former Intel Fellow Director of Intel’s 90nm Logic Technology and Strained Silicon Program, commented, “Uniaxial strain is now being recognized as the preferred strain type for deep-submicron device applications, and its local variant has displaced global biaxial strain as the mobility enhancer of choice. Biaxial strain has been plagued with process integration issues such as high defect levels and germanium interdiffusion, but more importantly is much less efficient in boosting PMOS transistor performance. Local uniaxial strain processes are already enhancing 90nm performance at many companies. The availability of a global uniaxially strained substrate can work with these existing approaches to substantially improve total transistor performance and has scaling advantages over local strain at the 45 nm node and beyond. I look forward to the introduction and use of this new technology.”

In line with SiGen’s new IP business model strategy, the company is actively pursuing the development and commercialization of NGS with a number of partners. The company believes there will be significant interest in the NGS technology and that this wafer-level uniaxial strained material will have the potential to become the strained silicon substrate of choice.

About strained silicon
Strained silicon is a very thin layer of single-crystal silicon with built-in strain (stress) to accelerate electrons which allows manufacture of faster devices. Proof that transistors fabricated with strained silicon were faster due to increased electron mobility and velocity was first demonstrated in the mid-1980s.

Explore further: Quantenna promises 10-gigabit Wi-Fi by next year

add to favorites email to friend print save as pdf

Related Stories

High-strengh materials created under pressure

Mar 18, 2014

At Vienna University of Technology, materials for lightweight construction, protective clothing or sports equipment can be produced at high temperatures and high pressures. This process is faster, better ...

Flexible, semi-transparent ultrathin solar cells

Mar 09, 2014

A lot of research has been done on graphene recently—carbon flakes, consisting of only one layer of atoms. As it turns out, there are other materials too which exhibit remarkable properties if they are ...

Recommended for you

Simplicity is key to co-operative robots

6 hours ago

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Freight train industry to miss safety deadline

6 hours ago

The U.S. freight railroad industry says only one-fifth of its track will be equipped with mandatory safety technology to prevent most collisions and derailments by the deadline set by Congress.

IBM posts lower 1Q earnings amid hardware slump

7 hours ago

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.

Microsoft CEO is driving data-culture mindset

8 hours ago

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

User comments : 0

More news stories

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Microsoft CEO is driving data-culture mindset

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...