Breakthrough in Silicon Technology: Wafer-Level Strained Silicon Technology Announced by SiGen

Aug 11, 2004
Strained Silicon

Silicon Genesis Corporation (SiGen) announced today that it has successfully developed a new wafer-level strained substrate technology, called “Next-Generation Strain” or NGS. NGS features uniaxial strain instead of biaxial strain and avoids the mobility degradation and the high defect levels associated with current silicon-germanium (SiGe) based biaxially strained silicon or strained silicon on insulator (s-SOI). Several chip manufacturers, including Intel and Texas Instruments, have successfully demonstrated the significant benefits of uniaxial strain at the transistor level. Intel pioneered the use of uniaxial strain-enhanced transistor technology and is already using it in its 90nm process. Until today, only local transistor-level uniaxial strain has been available. SiGen is changing that with the introduction of the NGS wafer-level strained substrate.

Francois J. Henley, President and CEO of Silicon Genesis, said, "We are very excited about our new global uniaxial strain technology. This new material offers the potential for significant mobility enhancements over SiGe-based biaxial strain wafer technologies and is compatible with local straining approaches since the strains are additive. It also features very low defect levels due to SiGen’s use of its proprietary low-temperature processing technology. It can be directly integrated on silicon as an “epi-like” strained bulk wafer or on an insulator as a strained silicon-on-insulator wafer (s-SOI). The incremental production costs are expected to be significantly lower than biaxial technologies because it avoids the costly steps of growing and relaxing thick silicon-germanium layers”.

Dr. Scott Thompson, Associate Professor of the University of Florida’s Department of Electrical and Computer Engineering and former Intel Fellow Director of Intel’s 90nm Logic Technology and Strained Silicon Program, commented, “Uniaxial strain is now being recognized as the preferred strain type for deep-submicron device applications, and its local variant has displaced global biaxial strain as the mobility enhancer of choice. Biaxial strain has been plagued with process integration issues such as high defect levels and germanium interdiffusion, but more importantly is much less efficient in boosting PMOS transistor performance. Local uniaxial strain processes are already enhancing 90nm performance at many companies. The availability of a global uniaxially strained substrate can work with these existing approaches to substantially improve total transistor performance and has scaling advantages over local strain at the 45 nm node and beyond. I look forward to the introduction and use of this new technology.”

In line with SiGen’s new IP business model strategy, the company is actively pursuing the development and commercialization of NGS with a number of partners. The company believes there will be significant interest in the NGS technology and that this wafer-level uniaxial strained material will have the potential to become the strained silicon substrate of choice.

About strained silicon
Strained silicon is a very thin layer of single-crystal silicon with built-in strain (stress) to accelerate electrons which allows manufacture of faster devices. Proof that transistors fabricated with strained silicon were faster due to increased electron mobility and velocity was first demonstrated in the mid-1980s.

Explore further: Tech gifts for the geek who already has everything

add to favorites email to friend print save as pdf

Related Stories

Researchers develop powerful, silicon-based laser

Sep 29, 2014

A silicon-based laser that lases up to a record 111°C, with a threshold current density of 200 A/cm2 and an output power exceeding 100 mW at room temperature, has been demonstrated by collaborating researcher ...

Stressing out copper TSVs with temperature

Sep 25, 2014

In the past, microelectronics were essentially a two-dimensional affair based upon flat integrated circuit chips connected to each other. Then, engineers opened up the third dimension, with integrated circuit ...

Will tomorrow's robots move like snakes?

Sep 16, 2014

Over the last few years, researchers at MIT's Computer Science and Artificial Intelligence Lab (CSAIL) have developed biologically inspired robots designed to fly like falcons, perch like pigeons, and swim ...

Recommended for you

Shedding light on solar power

4 hours ago

Everyone wants to save energy, but not everyone knows where to start. Grid Resources, a startup based out of the Centre for Urban Energy's iCUE incubator, is developing a new website that seeks to help homeowners ...

Energy transition project moves into its second phase

5 hours ago

Siemens is studying new concepts for optimizing the cost-effectiveness and technical performance of energy systems with distributed and fluctuating electricity production. The associated IRENE research project ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.