Researchers watch seeds in 3D and discover an unknown air path

Sep 15, 2006
Researchers watch seeds in 3D and discover an unknown air path
X-ray image of a seed with the seed-coat virtually removed showing the embryonic leaves (green) and stem (beige). Credit: Peter Cloetens

Researchers from the CNRS, the University J. Fourier (UJF) of Grenoble and the ESRF have recently visualised a plant seed in 3D using synchrotron light. This new view has revealed that there is a network of voids between the cells which may be used for oxygen storage that is needed for efficient germination. It is the first time that a living organism is studied using the holotomography technique at a third generation synchrotron source. The team behind the discovery publishes its results in PNAS.

Embryonic photosynthesis leads to the production of seed-internal oxygen that is important for seed development and quality. In order to visualize seed-internal structures that could serve for oxygen storage conventional microscopic methods could not be used because they require the seed to be cut thus leading to air escape. By using holotomography at the ESRF, scientists could get the full picture of an arabidopsis seed without any structural modification.

Researchers have identified individual cells within the seed and rendered them to show their three-dimensional organization. They have also distinguished an intercellular air network, which should represent an important circulation system for air and perhaps water during germination.

Researchers watch seeds in 3D and discover an unknown air path
A zoom on a stem section showing a virtual section through the seed together with the void network. Credit: Peter Cloetens

However, scientists can't yet assure that this is the path the oxygen follows to "feed" the seed: "Solving this question needs a nano-method to determine the exact composition of air in the network during seed formation, but unfortunately this method is not available yet", explains Silva Lerbs-Mache, the corresponding author of the paper.

The scientists used hard X-ray-based quantitative phase tomography at beamline ID19 to obtain three-dimensional images of an arabidopsis seed. This seed is a model plant for biologists and the first one the genome was sequenced. "This approach is to our knowledge the only imaging technique with the penetration capacity and imaged field size suited for an investigation at sub-micrometer resolution of an optically opaque object the size of a seed" explains Peter Cloetens, first author of the paper and scientist at the ESRF. It is applied for the first time to an autonomous living system, observed without object destruction, without staining, in air, and at room temperature.

The discovery of a void network opens the field of new research linking embryonic photosynthesis and the structure of the mature seed, in relation to seed quality, i. e. the capacity and vigour of germination. "The method could now be applied to study the seed structure of mutant plants that are deficient in germination and thus to link the mutation of one gene to changes in seed structure", explains Silva Lerbs-Mache.

Source: European Synchrotron Radiation Facility

Explore further: The blood preserved in the pumpkin did not belong to Louis XVI

add to favorites email to friend print save as pdf

Related Stories

Lessons from the Italian ban on pesticides

May 03, 2013

Exposure to sub-lethal doses of neonicotinoids may have a long-term effect on bees. One of Italy's top bee researchers recommends a ban on insecticide-coated seeds and in reintroducing rotating cultures against pests invasion.

Tapping sorghum's potential for cold tolerance

Oct 22, 2012

(Phys.org)—Sorghum was originally a tropical plant, but U.S. Department of Agriculture (USDA) scientists in Lubbock, Texas, are looking to Asia to increase sorghum's cold tolerance and expand its production ...

Recommended for you

Genome yields insights into golden eagle vision, smell

10 hours ago

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Genetic code of the deadly tsetse fly unraveled

12 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

12 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

12 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...