Virginia Tech football player uses prototype cast

Oct 31, 2005

Virginia Tech's starting running back Cedric Humes was able to play against Boston College despite a broken arm (the ulna bone) thanks, in part, to a prototype composite brace designed for him by Virginia Tech engineers.

Brian Love, a professor of materials science and engineering in the College of Engineering, and his biomaterials class met with Mike Goforth, Virginia Tech's director of athletic training shortly after Humes' accident, which was less than three weeks before the Boston game. The engineering class offered to work on an alternate bracing system that they thought could provide a much stiffer support than the currently available polypropylene molded structure.

Among the suggestions considered by the engineers was a uniaxial polypropylene/carbon fiber composite sheeting made by the Fillauer Company of Chattanooga, Tenn. Since it was made from the same matrix as previously used bracing materials in medicine, the biomedical community was already familiar with the composite's characteristics.

The company sent sample materials to Love, and the class was able to mold prototypes in their engineering laboratories. Then, the university hired a professional orthotist who completed one of the prototypes, and is working on the second. One consists of a bi-directional laminate and the second is composed of a uniaxial laminated composite.

The students reported their findings Tuesday to the Athletic Department--just two days before the Virginia Tech vs. Boston College game.

An added advantage to getting the design completed so quickly is that the biomaterials class is linked to the campus of the Wake Forest University School of Medicine. Virginia Tech spearheaded a partnership with this medical school in 2001, and formed the School of Biomedical Engineering and Science.

Love said, "The resulting stiffness and strength of the laminated structures has not been fully evaluated, but qualitative testing has shown that these structures are demonstrably stiffer than the current commercial devices already available."

Love added that the new bracing system will be shared with the trainers at Wake Forest. Further bracing enhancements may evolve from the efforts of the students who may have developed even higher performing designs for the longer term than the commercial "off the shelf" solution.

Source: Virginia Tech

Explore further: Public boarding school—the way to solve educational ills?

Related Stories

Female reproductive tract assists swimming sperm

Apr 15, 2015

In mammalian reproduction, sperm have a tough task: like trout swimming upstream, they must swim against a current through a convoluted female reproductive tract in search of the unfertilized egg.

Synthetic muscle ready for launch to Space Station

Apr 09, 2015

Lenore Rasmussen's dream of developing a synthetic muscle that could be used to make better prosthetic limbs and more responsive robots will literally become airborne on April 13 at 4:33 p.m. when her experiment ...

New discovery may be breakthrough for hydrogen cars

Apr 06, 2015

A team of Virginia Tech researchers has discovered a way to create hydrogen fuel using a biological method that greatly reduces the time and money it takes to produce the zero-emissions fuel. This method ...

Potential toxicity of cellulose nanocrystals examined

Feb 19, 2015

Novel nanomaterials derived from cellulose have many promising industrial applications, are biobased and biodegradable, and can be produced at relatively low cost. Their potential toxicity—whether ingested, ...

Recommended for you

Public boarding school—the way to solve educational ills?

7 hours ago

Buffalo's chronically struggling school system is considering an idea gaining momentum in other cities: public boarding schools that put round-the-clock attention on students and away from such daunting problems as poverty, ...

Study finds we think better on our feet, literally

Apr 24, 2015

A study from the Texas A&M Health Science Center School of Public Health finds students with standing desks are more attentive than their seated counterparts. In fact, preliminary results show 12 percent ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.