Chemists create new polymers by adding DNA base pairs

Sep 12, 2006

Chemists at Virginia Tech are creating new polymers by adding DNA base pairs. Attributes include improved stretchable behavior and self-healing polymer films and coatings.

The research will be presented at the 232nd national meeting of the American Chemical Society in San Francisco September 10-14, 2006.

Base pairs are the nucleotides on each side of the rungs that connect the strands of the DNA ladder. Adenine pairs with thymine; cytosine pairs with guanine.

Brian Mather of Albuquerque, a chemical engineering graduate student who is working with chemistry Professor Timothy E. Long in the College of Science at Virginia Tech, is studying how these molecules recognize each other in supramolecular complexes. He is attaching adenine and thymine as the outer sequences of triblock copolymers. These are polymers where the units of a molecular chain are connected in blocks of the same structure (xxxxxxxyyyyyyyyzzzzzzzz) rather than mixed randomly. "The base pair-containing block copolymers are used as precursors for subsequent molecular recognition," said Long.

"We are trying to integrate molecular biology with traditional macromolecular science in order to synthesize novel families of elastomers. The base pairs disassociate when heated and permit the polymer to easily flow in the melt state, making it easier to process with less energy," said Long. "When the triblock copolymer cools, the pairs reconnect and provide desirable elasticity and molecular recognition possibilities."

He said, "The concentration of base pairs can be very low because they are exquisite at recognizing each other. The strength of recognition is high and tunable."

The heated material is poured in a mold or applied to a surface to become a thin film. "We believe we can create thermo-reversible or self-healing surfaces, such as a windshield that will smooth if a small crack is generated," said Long.

The technology is one that is being investigated by the Multilayered Technologies for Armored Structures and Composites (MultiTASC) Materials Center of Excellence at Virginia Tech with funding from the Army Research Laboratory.

"This research could also benefit Southwest Virginia," Long said. "It could be the basis of biomaterial technologies developed by the Virginia-Maryland Regional College of Veterinary Medicine or the Virginia College of Osteopathic Medicine here and that a local company might produce. The Macromolecular Interfaces with Life Sciences (MILES) National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) program at Virginia Tech facilitates these types of discoveries."

Source: Virginia Tech

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

Marcellus drilling boom may have led to too many hotel rooms

42 minutes ago

Drilling in Pennsylvania's Marcellus Shale region led to a rapid increase in both the number of hotels and hotel industry jobs, but Penn State researchers report that the faltering occupancy rate may signal that there are ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0