New catalyst removes harmful perchlorate from groundwater

Sep 11, 2006

Scientists at the University of Illinois at Urbana-Champaign have developed a new chemical catalyst that uses hydrogen gas to efficiently remove and destroy harmful perchlorate in contaminated groundwater.

Found in solid-rocket fuel, roadside flares and fireworks, perchlorate is a dangerous contaminant that can disrupt thyroid function by interfering with the uptake of iodine. Infants and fetuses are believed to be particularly at risk from the effects of perchlorate exposure.

Because perchlorate is readily soluble in water, it can be transported vast distances in groundwater or rivers. A plume of contaminated groundwater from a manufacturing plant near Las Vegas, for example, reached the Colorado River and spread throughout the Southwest. Cleanup could take decades. "Perchlorate has been recognized as a significant environmental contaminant in U.S. water supplies, and its physical and chemical properties pose a serious challenge for remediation," said John Shapley, a professor of chemistry at Illinois and co-developer, with graduate student Keith Hurley, of the new catalyst.

Efforts at remediation using naturally occurring microorganisms or existing pump-and-treat technology are too complicated, too energy intensive or too slow to be practical, Shapley said.

The new catalyst is composed of two metals – palladium and rhenium – supported on activated carbon. The catalyst operates at room temperature under normal atmospheric pressure, and does not dissolve in water.

"In catalytic operation, the rhenium removes an oxygen atom from the perchlorate molecule in what is called an atom transfer reaction," Hurley said. "Meanwhile, the palladium activates the gaseous hydrogen atoms so they will react with the freed oxygen. What's left is harmless chloride and water." The catalytic reaction continues as long as there is both hydrogen gas and perchlorate contaminant present.

"While current technologies – such as ion exchange systems – can concentrate and remove perchlorate from water, they cannot destroy it," said Shapley, who will describe the new catalyst at the national meeting of the American Chemical Society. "Our catalyst would take a concentrated stream of perchlorate and get rid of it altogether."

Source: University of Illinois at Urbana-Champaign

Explore further: Researchers bring clean energy a step closer

add to favorites email to friend print save as pdf

Related Stories

New genetic technologies offer hope for white rhino

46 minutes ago

With support from the Seaver Institute, geneticists at San Diego Zoo Institute for Conservation Research are taking the initial steps in an effort to use cryopreserved cells to bring back the northern white rhino from the ...

Recommended for you

Researchers bring clean energy a step closer

22 hours ago

For nearly half a century, scientists have been trying to replace precious metal catalysts in fuel cells. Now, for the first time, researchers at Case Western Reserve University have shown that an inexpensive metal-free catalyst ...

The construction of ordered nanostructures from benzene

Feb 27, 2015

A way to link benzene rings together in a highly ordered three-dimensional helical structure using a straightforward polymerization procedure has been discovered by researchers from RIKEN Center for Sustainable ...

Superatomic nickel core and unusual molecular reactivity

Feb 27, 2015

A superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems, that contain superatoms, open a number of amazing possibilities ...

Oat breakfast cereals may contain a common mold-related toxin

Feb 25, 2015

Oats are often touted for boosting heart health, but scientists warn that the grain and its products might need closer monitoring for potential mold contamination. They report in ACS' Journal of Agricultural and Food Chemistry that s ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.