Surf's Up -- And One Coastal Microbe Has Adapted

Aug 25, 2006

California beachgoers may look lazy. But just a few miles off shore, scientists have discovered that a common coastal strain of cyanobacteria works diligently to thrive in choppy, polluted waters.

In a study in this week’s early online edition of The Proceedings of the National Academy of Sciences, researchers at The Institute for Genomic Research and Scripps Institution of Oceanography have sequenced the cyanobacterium’s genome—and found that this coastal dweller has adapted to a turbulent environment by learning to use metals in ways that its open-ocean relatives cannot.

In the study, led by Ian Paulsen of The Institute for Genomic Research (TIGR), scientists set out to begin understanding the adaptation of bacterial genomes to the coastal versus open ocean environments. Cyanobacteria are abundant in coastal waters reaching more than 100,000 per ml. Using a strain called Synechococcus CC9311 isolated just off the California coast by collaborator Brian Palenik of Scripps, they team sequenced its genome. They then compared the microbe’s genome to that of Synechococcus WH8102, a related cyanobacterial strain found in the open ocean, which they had previously studied.

As habitats, the coast and open ocean differ strikingly. Put simply, the coast is dicier. The wind stirs up nutrients from deeper depths, as well as sediments and land litter, sporadically sending metals and minerals surging through the water. Algae and other organisms enjoy this buffet of nutrients, which include pollutants from farm run-off and other human activity. All this gritty biomass alters the sunlight that seeps into the ocean layers, challenging organisms that photosynthesize, including cyanobacterium. In contrast to the disorderly coast, the open ocean presents a cleaner, more constant marine ecosystem.

How do cyanobacteria adapt to these starkly different settings? Genomics offers answers. In the PNAS study, the research team found that CC9311, the coastal cyanobacterium, has evolved a suite of metal-processing biology missing in its open-ocean relative. This molecular toolkit includes roughly a dozen metal enzymes or cofactors that can absorb, process, and store iron, copper, and possibly the element vanadium. What’s more, the coastal cyanobacteria strain has a relatively complex regulatory system, with 11 histidine kinase sensors and 17 response regulators--nearly double the number found in the open-ocean strain—that is likely needed for its metal metabolism and to respond to the complex coastal environment.

Like a canary in a coal mine, Paulsen says, these cyanobacteria may in the future serve as biosensors. “With further studies, we’d like to use these organisms to detect environmental changes, such as pollution, in these different environments,” Paulsen remarks. The team is already at work on a follow-up study, comparing differences in gene expression between the coastal and open-ocean cyanobacteria strains, when both are exposed to metal ions and other substances at very low (open ocean) or very high (coastal) concentrations. The current work was funded by the National Science Foundation.

Source: The Institute for Genomic Research

Explore further: Declining catch rates in Caribbean green turtle fishery may be result of overfishing

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Chimpanzees prefer firm, stable beds

1 hour ago

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

2 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

3 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.