Analysis: Quantum Dot may be sold cheap

Oct 13, 2005

Analysts are studying last week's acquisition by Invitrogen of Quantum Dot Corp., the nanotech startup that laid claim to all key life-science applications for quantum dots, trying to guess the sale amount and what it might mean for the industry.

Some nanotechnologists consider the sale of the Hayward, Calif., company a success, seeing it as a corporate leader's validation of the company as worthy of investment. Others are not so sure.

"It's nothing of the sort," Matthew Nordan, vice president of research at Lux Research, the nanotechnology analysis firm in New York City, told UPI's Nano World. "Quantum Dot Corporation had a large amount of venture-capital backing behind it, and the acquisition likely did not come close to matching it."

Venture capitalists had invested roughly $45.5 million in Quantum Dot, and although Invitrogen, the biotech giant in Carlsbad, Calif. -- a nearly $3.75 billion market-cap company -- did not reveal how much it spent to acquire the company, given that it acquired Molecular Probes of Eugene, Ore., in 2003 for six times its market valuation, "I would guess that Quantum Dot ... was acquired for $20 to $25 million at best," Nordan said.

Quantum dots are semiconductor crystals only nanometers or billionths of a meter wide. They fluoresce brightly when they absorb even minuscule amounts of light. Scientists can engineer the specific colors of light that quantum dots absorb or emit with extraordinary precision by adjusting their size and makeup. For instance, a cadmium-selenide quantum dot more than 6 nanometers in diameter emits red light, while one less than 3 nanometers wide glows green.

Quantum dots "represent the next generation of imaging," said Invitrogen spokesman Eric Endicott. They could help scientists image the behavior of cells and organs to a level of detail never before seen in the $500 million worldwide market for biological-detection agents.

Conventional fluorescent dyes used in the life sciences to help researchers monitor how cells and organs grow and develop normally lose their ability to emit light within seconds. Quantum dots, on the other hand, last far longer, helping investigators to monitor cells and organs in diseased and healthy conditions on a molecular scale in real time.

Quantum Dot "likely spent more money and time getting its gene-expression-analysis system to market than backers felt comfortable with, and ran out of money," Nordan said.

"This acquisition provides us with a deeper portfolio and a significant intellectual property position," Endicott said. "Right now, we're in the very early stages of market penetration with nanocrystals, and these acquisitions position us well for continued growth."

Quantum Dot often had threatened to sue anyone who might be infringing on its patents, so Invitrogen's acquisition "certainly changes the balance of power in an intellectual-property shutdown scenario. Quantum Dot ... could have gone after any company, but it would have just been burning cash," Nordan said. "At the same time, large corporations tend to also be more creative, willing and effective at cross-licensing."

Invitrogen also acquired the BioPixels arm of BioCrystal, in Westerville, Ohio, and announced an agreement with Georgia Tech Research Corp. in Atlanta for exclusive license to its nanocluster technology. Biopixels provide novel coatings and metal alloys for quantum dots, while nanoclusters are composed of noble metals such as gold or silver that offer up to 10 times the fluorescence of quantum dots.

"These announcements show that a very significant life-sciences corporation is willing to spend money on nanotech -- not piecemeal, but in a concentrated program, as part of a coordinated strategy to corner and drive new products," Nordan said. "It's really a vote of approval for nanotechnology."

Copyright 2005 by United Press International

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Nanovectors combine cancer imaging and therapy

Feb 09, 2015

Researchers at Imperial College London and the Laboratoire de chimie de la matière condensée de Paris (CNRS/Collège de France/UPMC) have designed and developed hybrid gold-silica nanoparticles, which are ...

Rediscovering spontaneous light emission

Feb 03, 2015

Berkeley Lab researchers have developed a nano-sized optical antenna that can greatly enhance the spontaneous emission of light from atoms, molecules and semiconductor quantum dots. This advance opens the ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.