Molecules of light pulses

Oct 12, 2005

Corrected [contrubuted by Prof. Dr. Fedor Mitschke]: Researchers at the University of Rostock in Germany have made the world's first molecules of light pulses, which might allow a significant increase in the data transfer rate of fiber optical systems. The molecules are built of temporal solitons, pulses of light that do not dissipate or easily lose their shape like most other types of pulses. Solitons are useful for transmitting information because the signals can travel over long distances without degrading.

Solitons are waves that can have characteristics similar to material particles, like electrons and billiard balls. Although molecules made from spatial solitons have been demonstrated before, the researchers claim that this is the first time anyone has made temporal solitons stick together to form structures analogous to molecules.

Fiber optical systems transmit information by sending light signals through a fiber as a combination of zeros (dark) and ones (light). The data transfer rate for binary coding is fast approaching its fundamental limits, but it may be possible to bypass the limit by transmitting information as zeros, ones, and twos with soliton molecules representing the number two.

The Rostock scientists propose that using soliton molecules as the "two" in information coding could take telecommunications technology to the next level without expensive infrastructure upgrades. They also believe that it may eventually be possible to represent higher numbers with molecules comprised of more complex groups of solitons.

M. Stratmann, T. Pagel, and F. Mitschke
Physical Review Letters
link.aps.org/abstract/PRL/v95/e143902

Source: American Physical Society

Explore further: Picturing Schrodinger's cat: Quantum physics enables revolutionary imaging method

add to favorites email to friend print save as pdf

Related Stories

Finding the right soliton for future networks

May 14, 2008

European researchers say their study of self-sustaining solitary light wave packets could result in a new generation of computers and optical telecommunications networks. Using light rather than electronic or magnetic devices ...

Recommended for you

A new, tunable device for spintronics

11 hours ago

Recently, the research group of Professor Jairo Sinova from the Institute of Physics at Johannes Gutenberg University Mainz in collaboration with researchers from the UK, Prague, and Japan, has for the first time realised ...

Watching the structure of glass under pressure

11 hours ago

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

14 hours ago

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

15 hours ago

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0