Molecules of light pulses

Oct 12, 2005

Corrected [contrubuted by Prof. Dr. Fedor Mitschke]: Researchers at the University of Rostock in Germany have made the world's first molecules of light pulses, which might allow a significant increase in the data transfer rate of fiber optical systems. The molecules are built of temporal solitons, pulses of light that do not dissipate or easily lose their shape like most other types of pulses. Solitons are useful for transmitting information because the signals can travel over long distances without degrading.

Solitons are waves that can have characteristics similar to material particles, like electrons and billiard balls. Although molecules made from spatial solitons have been demonstrated before, the researchers claim that this is the first time anyone has made temporal solitons stick together to form structures analogous to molecules.

Fiber optical systems transmit information by sending light signals through a fiber as a combination of zeros (dark) and ones (light). The data transfer rate for binary coding is fast approaching its fundamental limits, but it may be possible to bypass the limit by transmitting information as zeros, ones, and twos with soliton molecules representing the number two.

The Rostock scientists propose that using soliton molecules as the "two" in information coding could take telecommunications technology to the next level without expensive infrastructure upgrades. They also believe that it may eventually be possible to represent higher numbers with molecules comprised of more complex groups of solitons.

M. Stratmann, T. Pagel, and F. Mitschke
Physical Review Letters
link.aps.org/abstract/PRL/v95/e143902

Source: American Physical Society

Explore further: Evidence mounts for quantum criticality theory

add to favorites email to friend print save as pdf

Related Stories

Finding the right soliton for future networks

May 14, 2008

European researchers say their study of self-sustaining solitary light wave packets could result in a new generation of computers and optical telecommunications networks. Using light rather than electronic or magnetic devices ...

Recommended for you

Galaxy dust findings confound view of early Universe

12 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.