Scientists Confirm Toxic Seas During Earth's Evolution

Oct 07, 2005

NASA exobiology researchers confirmed Earth's oceans were once rich in sulfides that would prevent advanced life forms, such as fish and mammals, from thriving.

A team of scientists from the Massachusetts Institute of Technology and Harvard University, working with colleagues from Australia and the United Kingdom, analyzed the fossilized remains of photosynthetic pigments preserved in 1.6 billion-year-old rocks from the McArthur Basin in Northern Australia.

They found evidence of photosynthetic bacteria that require sulfides and sunlight to live. Known as purple and green sulfur bacteria because of their respective pigment colorations, these single-celled microbes can only live in environments where they simultaneously have access to sulfides and sunlight.

The researchers also found very low amounts of the fossilized remains of algae and oxygen-producing cyanobacteria. The relative scarcity of these organisms is due to poisoning by large amounts of sulfide.

"This work suggests Earth's oceans may have been hostile to animal and plant life until relatively recently," said Dr. Carl Pilcher, NASA's senior scientist for astrobiology. "If so, this would have profound implications for the evolution of modern life."

"The discovery of the fossilized pigments of purple sulfur bacteria is totally new and unexpected. Because they need fairly high intensity sunlight, it means the pink bacteria, along with their essential source of sulfide, close to the surface, perhaps as close as 20 to 40 meters," said Roger Summons, Massachusetts Institute of Technology professor of geobiology. "The sulfide would have come from bacteria that reduces sulfate carried into the oceans by the weathering of rocks."

"The McArthur Basin rocks were deposited over a very large area and over many millions of years, so it's likely they formed under water that was intermittently connected to or actually part of an ocean. In turn, this implies the ocean had an abundant and continuous supply of hydrogen sulfide and must have been quite toxic to any oxygen-breathing organisms," said team member Jochen Brocks. "In fact, for seven-eighths of Earth's 4.5 billion-year history, there was probably little oxygen in the oceans and certainly not enough to support oxygen-breathing marine animals."

This research continued the efforts of NASA and partner institutions to understand the early history of the Earth. Research results were published in the Oct. 6, 2005, edition of Nature magazine.

The research was conducted by a team working in Summons' laboratory. Team members include Jochen Brocks, formerly of Harvard and now at Australian National University; Gordon Love, Massachusetts Institute of Technology; Stephen Bowden, University of Aberdeen, Scotland; Graham Logan, Geoscience Australia; and Andrew Knoll, Harvard.

Source: NASA

Explore further: How were fossil tracks made by Early Triassic swimming reptiles so well preserved?

add to favorites email to friend print save as pdf

Related Stories

Solving carbon mysteries of the deep ocean

Feb 18, 2015

Understanding how oceans absorb and cycle carbon is crucial to understanding its role in climate change. For approximately 50 years, scientists have known there exists a large pool of dissolved carbon in ...

Recommended for you

Predicting human crowds with statistical physics

13 hours ago

For the first time researchers have directly measured a general law of how pedestrians interact in a crowd. This law can be used to create realistic crowds in virtual reality games and to make public spaces safer.

Bribery 'hits 1.6 billion people a year'

16 hours ago

A total of 1.6 billion people worldwide – nearly a quarter of the global population – are forced to pay bribes to gain access to everyday public services, according to a new book by academics at the Universities of Birmingham ...

Broken windows thesis springs a leak

17 hours ago

The broken windows theory posits that minor misdemeanors, like littering or graffiti spraying, stimulate more serious anti-social behavior. LMU sociologists now argue that the idea is flawed and does not ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.