New Breakthrough Physics Technique for Surface Diagnostics

Aug 05, 2004
Illustration of the process of using femtosecond laser pulses to measure moleculr movement of carbon monoxide on a copper substr

New method allows scientists to probe fundamental questions of surface science

A team of researchers including University of California, Riverside Assistant Professor of Chemistry, Ludwig Bartels has developed a technique to take extremely fast snapshots of molecular and atomic movement. The development is considered a significant advance in surface science, the study of chemical reactions taking place on the surface of solids. The results are reported in the current issue of the Journal Science and were also reported in the June 24 issue of Science Express... the online prerelease of the most important articles in Science.

The article, "Real-Space Observation of Molecular Motion Induced by Femtosecond Laser Pulses," details how carbon monoxide molecules move on a copper substrate when hit with extremely rapid laser pulses - a femtosecond is one millionth of a nanosecond - and tracks their movements.

"It was possible to identify the individual site-to-site displacements of molecules undergoing ultra-fast dynamics induced by femtosecond laser pulses," Bartels said, characterizing the technique as a way of getting something akin to snapshots of the molecules' movements. Bartels' co-authors in the paper included Tony F. Heinz, Dietmar Möller and Feng Wang of Columbia University; and Ernst Knoesel of Rowan University, Glassboro, NJ.

"Scanning probe microscopy has the capability of reaching directly down to the natural spatial scale of atoms and molecules," Bartels said. "While femtosecond laser techniques have the capability of reaching down to the time scale of atomic events.

"There has been considerable interest in the very challenging problem of combining these two capabilities," he added. "While we have not yet achieved the ultimate goal of a real-time, real-space movies, the current paper reports what we believe to be a very significant advance in combining the two very powerful techniques."

The new technique allows scientists to probe very important fundamental questions in surface science, according to Bartels and his co-authors. They include such questions as what substrate excitations drive surface diffusion of absorbates? Surface diffusion is a very basic and important process in surface science, playing a key role in processes as diverse as the formation of crystals and the activity of catalysts.

"This is very basic research but it has implications for many other areas in science," said Bartels. "Catalysts, like the one in the exhaust system in every car, are made from a porous material. The exhaust gas is passed through it and the pollutants such as carbon monoxide and nitric oxide can stick to the surface of the catalyst material."

A small portion of the catalyst surface can transform the pollutant into benign gasses while the rest of the surface supports these active sites. Understanding how carbon monoxide moves across a catalyst surface to find the active sites may ultimately allow the design of more efficient catalysts. The article's findings offer a new way of studying the very fast movement of carbon monoxide on surfaces.

The U.S. Department of Energy and the Air Force Office of Scientific Research support this research.

Related Links
* Ludwig Bartels' faculty Web page is at www.chem.ucr.edu/faculty/bartels/bartels.html
* The Science magazine Web site is at www.sciencemag.org/content/current/
* An abstract of the article is available at www.sciencemag.org/cgi/content… bstract/305/5684/648


Source:

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Concrete solutions to aging bridges

32 minutes ago

According to the Pennsylvania Department of Transportation (PennDOT), this state leads the nation in the number of bridges classified as "structurally deficient."

Satellite gearing up to take EPIC pictures of Earth

33 minutes ago

The Deep Space Climate Observatory (DSCOVR) satellite is on its way to do something epic. NOAA's spacecraft, sent to monitor space weather, will use its Earth Polychromatic Imaging Camera (EPIC) to capture ...

CT scan taken of mummified remains in statue

2 hours ago

(Phys.org) —A CT scan and endoscopy have revealed a master's mummy inside a Buddha statue. These were mummified remains of an ancient Buddhist monk who lived during the 11th or 12th century. Investigations ...

Recommended for you

New filter could advance terahertz data transmission

57 minutes ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

1 hour ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

2 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

3 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

15 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.