C<sub>60</sub> increases gain in organic-metal-semiconductor transistors

May 04, 2004
C60_resize

I. A. Hümmelgen and group of scientists from Brazil and UK implemented C60 to metal-base transistor technology.
They used evaporated C60 as the emitter in a vertical transistor structure with Au base and Si collector. The proportion of emitted electrons that overcome the barrier is measured as at least 0.99. This metal-base transistor is easy to fabricate as it does not involve wafer bonding or require perfect semiconductor-on-metal growth.
Recent article has been published in Applied Physics Letters (Vol. 84, No. 20, pp. 3978–3980)

All-inorganic metal-base transistors (MBT) with magnetic base have attracted great interest for use as sensors. The spin-valve effect (also called giant magnetoresistance) has led to an intense research activity worldwide, motivated both by the enormous potential for read heads for magnetic recording and the fundamental interest of the physical phenomena. Since its discovery in 1988, magnetic-field sensors based on the giant magnetoresistance of magnetic multilayers have been the subject of much investigation.
Nevertheless, inorganic MBTs have very low current gains, as well as being difficult to fabricate. These problems may be overcome with the use of an organic emitter.

The MBT consists of an ultrathin metal layer (the base), sandwiched between two semiconductors (the emitter and the collector). Like a conventional bipolar transistor, the MBT is a three-terminal device with a forward biased emitter-base junction and a reverse-biased base-collector junction. However, in the MBT these are Schottky junctions rather than p–n junctions.

A straightforward modification to the basic MBT design that authors introduced solves both of the problems present in conventional inorganic MBTs mentioned above, though at the cost of requiring high operating potentials. This improvement is achieved using fullerene C60 as the emitter material. It demonstrates the feasibility of using organic materials as the emitter in hybrid organic–inorganic transistor structures functioning by the injection of a current across an ultrathin base layer.

Explore further: Solving molybdenum disulfide's 'thin' problem

Related Stories

Fullerenes and nanotubes are back in the news

May 12, 2004

Shaped carbon molecules are known officially as fullerenes and unofficially as ''buckyballs''. The news blurbs about Carbon-50, self-assemble nanotubes and fullerene transistors are circulating around the Net. ...

Recommended for you

From tobacco to cyberwood

5 hours ago

Swiss scientists from ETH Zurich have developed a thermometer that is at least 100 times more sensitive than previous temperature sensors. It consists of a bio-synthetic hybrid material of tobacco cells and nanotubes.

Scientists convert microbubbles to nanoparticles

8 hours ago

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

'Atomic chicken-wire' is key to faster DNA sequencing

12 hours ago

An unusual and very exciting form of carbon - that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research ...

3-D images of tiny objects down to 25 nanometres

13 hours ago

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.