Plants tell caterpillars when it's safe to forage

May 16, 2006

The world is filled with cues that could influence the daily feeding patterns of an organism. Many plants, for example, respond to foraging damage by releasing specialized chemical signals - volatile organic compounds that evaporate in the air - that attract the forager's natural enemies. This strategy is obviously no use against a cow, but proves effective when the offender is a caterpillar and the summoned predator is a wasp. Just how much control such biotic factors exert over a forager's daily routine has remained an open question.

But in a new study in the open access journal PLoS Biology, Kaori Shiojiri, Rika Ozawa, and Junji Takabayashi show that plant signals can indeed regulate herbivore behavior.

When the larvae of beet armyworms (Spodoptera exigua) feed on corn, the plant releases volatile compounds that act as a magnet for parasitic wasps (Cotesia marginiventris), which deposit their eggs in the larvae. Production of volatile chemicals increases during the day (when wasps are active) and decreases at night, suggesting that variations in production might affect the daily activity patterns of foraging larvae, with low production sending the signal that the coast is clear. To test this hypothesis, Shiojiri et al. exposed larvae of a corn-munching nocturnal caterpillar, Mythimna separata, to volatile compounds from corn and varied the light and dark conditions for both corn and insect. Corn infested with M. separata releases volatiles that attract parasitic wasps (C. kariyai).

The researchers separated the effects of photoperiod from that of host plant volatiles to tease out their relative contributions to caterpillar behavior. First, they tested the effects of light. If larvae are diurnal, they should hide in "shelters" fashioned out of filter paper attached to the plastic cups they were kept in. When larvae were fed an artificial diet, however, different light conditions produced no changes in their hiding behavior.

But introducing plants changed larvae behavior under both day and night conditions. Six pots of three uninfested corn plants - plants that had never been grazed - were placed around the cups of larvae. After eight hours, about 20% more larvae went into hiding when the lights were on and plants were added. And when plants were introduced under dark conditions, about 30% less larvae were found hiding than were found in the dark without plants. Finally, to test the effect of plant volatiles directly, the researchers exposed larvae - some in the light and some in the dark - to a flow of volatiles collected from both uninfested and infested corn plants in light and dark conditions. When larvae in the dark were exposed to volatiles from uninfested plants, they hid in far greater numbers when the volatiles came from plants in the light than when they came from plants in the dark. And when larvae were in the light, far more hid when exposed to volatiles taken from plants in the light. Larvae responded similarly to volatiles taken from infested plants, though volatiles from infested plants in the light sent even more larvae into hiding.

These results demonstrate that it is not light that's controlling larval diurnal and nocturnal activity but volatiles released by the corn. Volatile compounds released during the day encourage hiding while those released at night indicate that it's safe to come out and eat. Just as parasitic wasps use plant volatiles to home in on potential victims, caterpillars use variations in their host plant's volatile production to reduce the risk of unpleasant encounters with wasps. Now that they've established volatiles' importance in influencing foraging behavior, the researchers plan to determine which compounds are responsible - and just how common insect-plant communication may be.

Citation: Shiojiri K, Ozawa R, Takabayashi J (2006) Plant volatiles, rather than light, determine the nocturnal behavior of a caterpillar. PLoS Biol 4(6): e164.
http://dx.doi.org/10.1371/journal.pbio.0040164

Source: Public Library of Science

Explore further: Japan to continue scientific whaling in Pacific: reports

add to favorites email to friend print save as pdf

Related Stories

Stopping the spread of ash dieback fungus

Apr 23, 2013

The destruction of trees as a result of the ash dieback fungus has been a growing concern among scientists, having seen its rapid spread across Europe since the 1990s.

Herbivore defence in ferns

Nov 21, 2012

(Phys.org)—Unlike flowering plants, bracken ferns do not release any odour signals to attract the enemies of their attackers for their own benefit.

Recommended for you

Scientists tether lionfish to Cayman reefs

50 minutes ago

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

11 hours ago

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.