The comet with a broken heart

Apr 25, 2006
The comet with a broken heart
Image of the broken fragments surrounding Fragment B of Comet P73/Schwassmann-Wachmann 3 observed with FORS1 on ESO's VLT in three filters (B - blue, V - green, and R - red). As the telescope was tracking the comet, the stars appear as coloured trails, indicating the order in which the comet was observed in the different filters. The main fragment B, as well as the newly split smaller fragments just underneath, are clearly visible. Five additional mini-comets are also seen in the image. Credit: ESO

Comet P73/Schwassmann-Wachmann 3 (SW 3) is a body with a very tormented past. This comet revolves around the Sun in about 5.4 years, in a very elongated orbit that brings it from inwards the Earth's orbit to the neighbourhood of giant planet Jupiter.

In 1995, when it was coming 'close' to the Earth, it underwent a dramatic and completely unexpected, thousand-fold brightening. Observations in 1996, with ESO's New Technology Telescope and 3.6-m telescope, at La Silla, showed that this was due to the fact that the comet had split into three distinct pieces. Later, in December 1996, two more fragments were discovered. At the last comeback, in 2001, of these five fragments only three were still seen, the fragments C (the largest one), B and E. No new fragmentations happened during this approach, apparently.

Things were different this time, when the comet moved again towards its closest approach to the Sun – and to the Earth. Early in March, seven fragments were observed, the brightest (fragment C) being of magnitude 12, i.e. 250 fainter than what the unaided can see, while fragment B was 10 times fainter still. In the course of March, 6 new fragments were seen.

Early in April, fragment B went into outburst, brightening by a factor 10 and on 7 April, six new fragments were discovered, confirming the high degree of fragmentation of the comet. On 12 April, fragment B was as bright as the main fragment C, with a magnitude around 9 (16 times fainter than what a keen observer can see with unaided eyes). Fragment B seems to have fragmented again, bringing the total of fragments close to 40, some being most probably very small, boulder-sized objects with irregular and short-lived activity.

The new observations reveal that this new small fragment has split again! The image clearly reveals that below the main B fragment, there is a small fragment that is divided into two and a careful analysis reveals five more tiny fragments almost aligned. Thus, this image alone shows at least 7 fragments. The comet has produced a whole set of mini-comets!

Will the process continue? Will more and more fragments form and will the comet finally disintegrate? How many new fragments will have appeared before the comet reaches its closest approach to the Sun, around 7 June, and how bright will they be when the comet will be the closest to the Earth, on 11 to 14 May?

Fragment C of the comet should be the closest to Earth on 11 May, when it will be about 12 million km away, while fragment B will come as 'close' as 10 million km from Earth on 14 May. Although this is the closest a comet ever approached Earth in more than twenty years – even Comet Hyakutake's smallest distance was 15 million km - this is still 26 times the distance between the Earth and the Moon and therefore does not pose any threat to our planet.

If nothing else happens, at the time of closest approach, fragment B will be just visible with unaided eye by experienced observers. It should be an easy target however to observe with binoculars. If we are lucky, however, fragment B presents another outburst, becoming a magnificent sight in the night sky. On the other hand, it could just as well fade away into oblivion. But then, the main fragment C should still be visible, even possibly with the unaided eye.

ESO telescopes will observe the comet in the greatest detail at the end of May, when it is best observed from Chile and is brighter. These observations will obtain invaluable information, especially as the fragmentation process is revealing all the pristine material buried below the crust of the comet. As such, these observations will prove an ideal complement to the most comprehensive observation campaign made with ESO telescopes of Comet Tempel 1 when it was being bombarded by the Deep Impact spacecraft, on 4 July 2005.

About 30 comets have been observed to split in historical times and this process is almost always accompanied by a significant brightening. For instance, the nucleus of comet Shoemaker-Levy 9 broke up into at least 21 individual pieces when it passed very close to Jupiter on July 8, 1992; this was the reason that it became bright enough to be detected some eight months later. In the case of SW-3, the opening of rifts and the subsequent splitting took place far from any planet and must in some way have been caused by increased solar heating. It is possible that major cracks and rifts opened in the irregularly shaped icy nucleus already before perihelion as the surface temperature began to increase. Completely ''fresh'' cometary material was thereby exposed to the solar light and the evaporation rate increased quickly, releasing more gas and dust into space. In the course of this process, the rifts gradually widened until the definitive breakage occurred somewhat later.

Comet Schwassmann-Wachmann 3 was discovered on May 2, 1930, on a photographic plate obtained at the Hamburg Observatory (Germany) by two astronomers at this institution, Arnold Schwassmann and Arthur Arno Wachmann. The subsequent observations showed that the comet moved in an elliptical orbit with a revolution period of somewhat more than 5 years. Great efforts were expended to observe the comet during the next returns, but it was not recovered until nearly 50 years and eight revolutions later, when its faint image was found of a plate obtained in August 1979 with a telescope at the Perth Observatory in Western Australia. It was missed in 1984, but was sighted again in 1989 and since then, it is observed at each close approach. Thus this comet has only been observed during six out of fifteen approaches since 1930. While this may be partly due to a less advantageous location in the sky at some returns, it is also a strong indication that the comet behaves unpredictably and must have a quite variable brightness. Orbital calculations have shown that it was inserted into the present, short-period orbit by the strong gravitational pull of Jupiter during several, relatively close encounters with this giant planet. For instance, it passed Jupiter at a distance of about 30 million kilometres in 1882 and 1894, and again at 40 million kilometres in 1965. SW-3 belongs to the so-called ''Jupiter family'' of comets.

The observations were done with the FORS1 multi-mode instrument on Kueyen, the second 8.2-m Unit Telescope of the Very Large Telescope located at Cerro Paranal (Chile). The fragment was observed in four bands (B, V, R, and I) for a total of 30 minutes by Emmanuel Jehin, Olivier Hainaut, Michelle Doherty, and Christian Herrera, all from ESO. The astronomers had the telescope track the comet, which explains why the stars appear as trails of coloured dots, each colour corresponding to the order in which the observations were done in the various filters. At the time of the observations, the comet was 26.6 million km away from the Earth, in the constellation Corona Borealis. The seeing was 1.5" as the comet was observed when it was rather low on the horizon as seen from Paranal. The final processing of the image was done by Olivia Blanchemain and Haennes Heyer (ESO).

More observations of the comet are foreseen from 20 till 30 May, with ESO telescopes on the three sites of La Silla (NTT, 3.6m), Paranal (VLT) and Chajnantor (APEX). These observations will study aspects as diverse as the presence of organics in the dust, the composition of this dust, the structure of the coma, and the presence of deuterated water.

Source: ESO

Explore further: Computer model shows moon's core surrounded by liquid and it's caused by Earth's gravity

add to favorites email to friend print save as pdf

Related Stories

New meteor shower "just a memory" of what once was there

Jul 23, 2014

The weak display of last month's Camelopardalids meteor shower, the result of the close passage of comet 209P/LINEAR, may have disappointed backyard observers, but this never-before-seen shower now has scientists ...

The dual personality of comet 67P/C-G

Jul 18, 2014

(Phys.org) —This week's images of comet 67P/Churyumov-Gerasimenko reveal an extraordinarily irregular shape. We had hints of that in last week's images and in the unscheduled previews that were seen a few ...

Looking back at the Jupiter crash 20 years later

Jul 16, 2014

(Phys.org) —Twenty years ago, human and robotic eyes observed the first recorded impact between cosmic bodies in the solar system, as fragments of comet Shoemaker-Levy 9 slammed into the atmosphere of Jupiter.

Solar photons drive water off the Moon

Jun 17, 2014

(Phys.org) —Water is thought to be embedded in the moon's rocks or, if cold enough, "stuck" on their surfaces. It's predominantly found at the poles. But scientists probably won't find it intact on the ...

Will an asteroid smack Jupiter in 2022?

May 30, 2014

A recent space rock discovery has sent a minor buzz through the community that tracks such objects. And as usual, it has also begun to attract the dubious attention of those less than honorable sites—we ...

Recommended for you

Comet Jacques makes a 'questionable' appearance

20 hours ago

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

20 hours ago

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Titan offers clues to atmospheres of hazy planets

20 hours ago

When hazy planets pass across the face of their star, a curious thing happens. Astronomers are not able to see any changes in the range of light coming from the star and planet system.

Having fun with the equation of time

20 hours ago

If you're like us, you might've looked at a globe of the Earth in elementary school long before the days of Google Earth and wondered just what that strange looking figure eight thing on its side was.

User comments : 0