Hubble Catches Scattered Light From The Boomerang Nebula

Sep 15, 2005
Hubble Catches Scattered Light From The Boomerang Nebula

The Hubble Space Telescope has "caught" the Boomerang Nebula in these new images taken with the Advanced Camera for Surveys. This reflecting cloud of dust and gas has two nearly symmetric lobes (or cones) of matter that are being ejected from a central star.

Over the last 1,500 years, nearly one and a half times the mass of our Sun has been lost by the central star of the Boomerang Nebula in an ejection process known as a bipolar outflow.

The nebula's name is derived from its symmetric structure as seen from ground-based telescopes. Hubble's sharp view is able to resolve patterns and ripples in the nebula very close to the central star that are not visible from the ground.

Astronomers are uncertain of the cause of bipolar outflow in this, and many other, young nebulae like the Boomerang. It may be that a disk of slow-moving material is situated around the equator of the star, thereby blocking more rapidly moving ejected material there, and allowing only matter closer to the poles to be ejected.

Another consideration may be that magnetic fields are responsible for constraining the material and thus causing the double-lobed shape of the nebula.

Bipolar outflows are seen to occur both from very young stars ("protostars") that are still in the process of collapsing and forming, and from old stars nearing the ends of their lives that have become bloated red giants. The Boomerang is believed to be the ejected outer layers from an old red giant.

Each lobe of the Boomerang Nebula is nearly one light-year in length, making the total length of the nebula half as long as the distance from our Sun to our nearest neighbors - the Alpha Centauri stellar system, located roughly 4 light-years away.

These images of the Boomerang were taken in early 2005 with the Advanced Camera for Surveys onboard Hubble. A visible light filter was used in combination with a series of polarization filters.

Similar to polarizing sunglasses that are used to reduce the amount of scattered light that enters our eyes on a sunny day, the telescope's polarizing filters allow only light of a specific polarization angle to pass through to the camera's detector.

By combining images taken at different polarization angles, astronomers can study light scattering in the nebula and the properties of the small dust particles responsible for the scattering. Colors were assigned to represent different polarization components, and then those colors were adjusted to accentuate features in the nebula, resulting in the multi-hued composite image.

The Boomerang Nebula is located about 5,000 light-years from Earth in the direction of the Southern constellation Centaurus. Submillimeter radio measurements made in 1995 show the deep interior of the nebula to have a temperature of only one degree Kelvin above absolute zero, with absolute zero equal to nearly -460 degrees Fahrenheit.

This makes the inner regions of the Boomerang Nebula one of the coldest known places in the universe.

Copyright 2005 by Space Daily, Distributed United Press International

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Born in beauty: Proplyds in the Orion Nebula (w/ Video)

Dec 14, 2009

(PhysOrg.com) -- A collection of 30 never-before-released images of embryonic planetary systems in the Orion Nebula are the highlight of the longest single Hubble Space Telescope project ever dedicated to ...

Recommended for you

SDO captures images of two mid-level flares

23 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.