Towards the magnetic fridge

Apr 21, 2006

Researchers at the University of Cambridge have discovered a material that gives a whole new complexion to the term 'fridge magnet'. When this alloy is placed in a magnetic field, it gets colder. Karl Sandeman and his co-workers think that their material - a blend of cobalt, manganese, silicon and germanium - could help to usher in a new type of refrigerator that is up to 40 percent more energy-efficient than conventional models.

Given how much energy is consumed by domestic and industrial refrigeration, that could have a significant environmental payoff. Sandeman describes the work at the Institute of Physics Condensed Matter and Materials Physics conference at the University of Exeter, on Friday 21 April.

The 'magnetic fridge' envisaged by the Cambridge team would use a phenomenon called the magnetocaloric effect (MCE), whereby a magnetic field causes certain materials to get warmer (a positive MCE) or cooler (a negative MCE). Although the effect was discovered more than 120 years ago, it is only recently that magnetocaloric materials have been known with the right properties for use in everyday refrigeration. But several factors have so far prevented such applications.

For one thing, some of the materials - typically metal alloys - that show the strongest MCE contain the element gadolinium, which is very expensive. And some of the best potential alternatives contain arsenic, raising health concerns.

Sandeman and colleagues have now found a material that is neither toxic nor costly, and which generates significant cooling at around room temperature. The key to the magnetocaloric behaviour is a sudden change in the magnetic state of the compound - a so-called magnetic transition. The material is magnetic because it contains metal atoms that themselves act like tiny bar magnets. As it is warmed up from subzero temperatures, there comes a point where these atomic magnets abruptly change the way in which they are lined up. This switch occurs at different temperatures when the material is placed in a magnetic field. So applying such a field can trigger the magnetic transition, and the resulting realignment of atomic magnets can then cause the material to lose heat and become colder - in other words, it shows a negative MCE.

Such a material could act as a heat pump for refrigeration. Applying the magnetic field triggers cooling; then the field is switched off and the material absorbs heat from its surroundings, cooling them down. Once that has happened, the field is switched on again and the cycle repeats, each time sucking more heat from the surroundings.

Sandeman and colleagues say that their new magnetocaloric material is particularly attractive because it can be tuned - depending on the strength of the applied magnetic field, as well as the way the substance is synthesized - to work over a wide temperature range, making it potentially suitable not just for a kitchen fridge working at room temperature but for other cooling applications at higher or lower temperatures. The Cambridge team are now developing a spin-off company, Camfridge Ltd, to bring their new materials system to real applications.

Source: Institute of Physics

Explore further: New complex oxides could advance memory devices

add to favorites email to friend print save as pdf

Related Stories

Better non-functional security tests for software

12 minutes ago

The integration of digital expert knowledge and automation of risk analyses can greatly improve software test procedures and make cloud computing more secure. This is shown by the latest results of a project ...

'Jaws' lived in Doncaster according to fossil record

12 minutes ago

(Phys.org) —Sharks, swamps and a tropical rainforest teeming with life – it's not what comes to mind when you think of Yorkshire. But for the first time evidence of Doncaster's 310-million-year-old past, including a ...

Invisibility cloaks closer thanks to 'digital metamaterials'

14 minutes ago

The concept of "digital metamaterials" – a simple way of designing metamaterials with bizarre optical properties that could hasten the development of devices such as invisibility cloaks and superlenses – is reported in a paper published today in Nature ...

Recommended for you

New complex oxides could advance memory devices

17 hours ago

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

User comments : 0