How The Octopus Forms An Elbow

Apr 21, 2006

The octopus arm is extremely flexible. Thanks to this flexibility--the arm is said to possess a virtually infinite number of "degrees of freedom"--the octopus is able to generate a vast repertoire of movements that is unmatched by the human arm.

Nonetheless, despite the huge evolutionary gap and morphological differences between the octopus and vertebrates, the octopus arm acts much like a three-jointed vertebrate limb when the octopus performs precise point-to-point movements. Researchers have now illuminated how octopus arms are able to form joint-like structures, and how the movements of these joints are controlled.

The new findings, which appear in the April 18th issue of Current Biology, are reported by Tamar Flash of the Weizmann Institute of Science, Binyamin Hochner and German Sumbre of Hebrew University, and Graziano Fiorito of the Stazione Zoologica di Napoli.

The extreme motility of the octopus arm demands a highly complex motor control system. Past work from Dr. Hochner's group showed that when retrieving food to its mouth, the octopus actually shapes its arm into a quasi-articulated structure by forming three bends that act like skeletal joints. This puts an artificial constraint of sorts on the arm's movement and simplifies the otherwise complex control of movement that would be needed for the arm to fetch food from a distant point to the octopus's mouth.

In the new work, the researchers sought to identify how the octopus manages to transform its extremely flexible arm into a structure that acts like a jointed appendage. By recording muscle activity as the arm creates the joint-like bends, the researchers found that the arm generates two waves of muscle contraction that propagate toward each other, setting the second, or medial, joint at their collision point. This is a remarkably simple mechanism for adjusting the length of the arm segments according to where the object is grasped along the arm. The arm also forms a proximal joint near where the arm meets the body, and a distal joint near the suckers that have grasped the food. The medial joint typically exhibits the most movement during food retrieval.

The authors also found evidence that, like certain types of human arm movements, octopus fetching movements are controlled in terms of joint angles, rather than by a system that relies on the brain's coordinate-based map of external space.

The presence of similar structural features and control strategies in articulated limbs (for example, jointed vertebrate arms) and flexible octopus arms suggests that these qualities have evolved convergently in octopuses and in vertebrates, and it also suggests that an articulated limb--controlled at the level of joints--is the optimal solution to the challenge of achieving precise point-to-point movements by a limb.

Copyright 2006 by Space Daily, Distributed United Press International

Explore further: Earlier Stone Age artifacts found in Northern Cape of South Africa

add to favorites email to friend print save as pdf

Related Stories

Octopus got your tongue?

Jan 07, 2014

It's an unusual coupling: A linguist and a marine biologist are working together to investigate the human tongue. In their study, the USC Dornsife researchers are using two species of octopus and tiny worms ...

Robots acquire 'softness' and flexibility

Dec 05, 2013

Increasingly small robots that carry out their functions even inside the human body. No, this isn't a sci-fi dream but a close possibility. On one condition: the miniaturization of these devices requires ...

Underwater propulsion from a 3D printer

Jul 22, 2013

Octopods, which are also known as octopuses or squid, are considered to be the most intelligent invertebrates. In fact, they have been referred to as the "sages of the sea". They are capable of learning; ...

Underwater propulsion from a 3-D printer

Jul 01, 2013

Nature inspires creativity: in building a silent propulsion system for boats and water sport devices, researchers used the octopus as their role model. The system can be produced at a low cost and in a single ...

Fish mimics octopus that mimics fish

Jan 04, 2012

Nature's game of intimidation and imitation comes full circle in the waters of Indonesia, where scientists have recorded for the first time an association between the black-marble jawfish (Stalix cf. histrio) and th ...

Recommended for you

Narcissistic CEOs and financial performance

18 hours ago

Narcissism, considered by some as the "dark side of the executive personality," may actually be a good thing when it comes to certain financial measures, with companies led by narcissistic CEOs outperforming those helmed ...

Election surprises tend to erode trust in government

18 hours ago

When asked who is going to win an election, people tend to predict their own candidate will come out on top. When that doesn't happen, according to a new study from the University of Georgia, these "surprised losers" often ...

User comments : 0