Miniature microscope allows biomedical researchers to observe tissue deep inside live subjects

Sep 13, 2005

A team of Stanford University scientists and engineers has developed a miniature microscope that will allow researchers to observe nerve cells and capillaries deep inside living subjects. The new device, called a two-photon microendoscope, is less than 1.5 inches long and weighs about one-tenth of an ounce. It was designed in the laboratory of Mark Schnitzer, assistant professor of biological sciences and of applied physics.

"Such compact instrumentation should be useful for a broad range of biomedical purposes," write Schnitzer and his colleagues in the Sept. 1 issue of the journal Optics Letters. "Fruitful applications might include clinical diagnostics or studies in small animals."

Imaging live cells below the surface is difficult to accomplish with conventional techniques. Electron microscopy cannot be used on living organisms, and optical (light) microscopy cannot penetrate deeply because light scatters as it travels through tissue.

For their device, Schnitzer and his co-authors turned to a newer technology called two-photon fluorescence imaging. This technique reduces scattering and background haze because molecules outside the area of interest are less likely to absorb pairs of photons simultaneously and fluoresce (radiate) in response.

One disadvantage of two-photon microscopy is that it penetrates only about half a millimeter below the tissue surface. To get at deeper structures, the Stanford team combined two-photon imaging with microendoscopy, a technique in which tiny, minimally invasive fiber-optic probes are inserted into living tissue. Probes were placed in the brains of anesthetized laboratory mice to produce detailed images of minute cerebral blood vessels located more than 1 millimeter below the surface. The probes are long enough to reach any portion of the rodent's brain, which is about the size of a lima bean.

"We've designed the world's smallest two-photon microscope," says Schnitzer, an affiliate of Stanford's interdisciplinary Bio-X research program. "This is a portable handheld device with the power of two-photon imaging—the full functionality of a microscope that fits in the palm of your hand."

His next goal is to design a microscope that can be used on unanesthetized mice that are alert and mobile. He and his colleagues also are collaborating with Nikolas Blevins, assistant professor of otolaryngology, who studies the inner ear, and Lawrence Recht, professor of neurology and neurological sciences, who is using endoscopic probes to image brain tumors in mice. Schnitzer predicts that the microendoscopy technique eventually will have broad applications for imaging human patients as well.

The Optics Letters paper was co-authored by graduate students Benjamin A. Flusberg, Eric D. Cocker and Erik P. Anderson of Stanford, and Juergen C. Jung of Oxford University. The study was supported by the National Science Foundation, the Office of Naval Research and the Beckman Foundation.

This article is based on a story published by the Optical Society of America.

Source: Stanford University

Explore further: Nike krypton laser achieves spot in Guinness World Records

add to favorites email to friend print save as pdf

Related Stories

Security contest techies say they hacked Tesla Model S

1 hour ago

The good news: Tomorrow's cars are computers on wheels. The bad news: Tomorrow's cars are computers on wheels. Ma Jie, writing in Bloomberg News, reported this week that the Tesla Model S sedan was the target ...

Water problems lead to riots, deaths in South Africa

2 hours ago

Three babies who died from drinking tap water contaminated by sewage have become a tragic symbol of South Africa's struggle to cope with a flood of people into cities designed under apartheid to cater to ...

How Kindle Unlimited compares with Scribd, Oyster

15 hours ago

Amazon is the latest—and largest—company to offer unlimited e-books for a monthly fee. Here's how Kindle Unlimited, which Amazon announced Friday, compares with rivals Scribd and Oyster.

Recommended for you

Nike krypton laser achieves spot in Guinness World Records

1 hour ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Unleashing the power of quantum dot triplets

5 hours ago

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Chemist develops X-ray vision for quality assurance

5 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

5 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

23 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0