Researchers say we can't count on plants forever for CO2 storage

Apr 12, 2006
Researchers say we can't count on plants forever for CO2 storage

Rising carbon dioxide levels in the atmosphere will over time lead to nutrient limitations to grassland productivity, according to a study by researchers at the University of Michigan and the University of Minnesota. An article to be published Thursday in the journal Nature, which is based on a six-year study—the longest known study of its kind—says that decision-makers need to understand the relationship between fossil fuel emissions and plant productivity and nutrients when they set policy. Grasslands amount to about 30 percent of the arable land surface of the world.

"The results suggest that our ecosystem likely cannot get enough nutrients under elevated levels of CO2," said David Ellsworth, associate professor of plant ecophysiology at the University of Michigan School of Natural Resources and Environment. "As a result, we think that the soil will be unable to sustain growth and productivity increases from enriched CO2 over time."

At Cedar Creek Natural History Area in central Minnesota, the researchers grew 16 native or naturalized plant species in two types of plots. The soil in one plot type was enriched with nitrogen while the soil in the other type was not. The purpose of the study was to document the plant's ability to grow biomass and flourish in a nutrient-poor soil as carbon dioxide levels increased to concentrations likely to be reached in the middle of this century.

The study's results are consistent with previous experimental studies of the interaction between carbon dioxide and nitrogen in agricultural and forest plantation systems, according to Ellsworth. "This suggests that there may be no 'free-lunch' of nitrogen for plants under CO2 enrichment for this long."

With its wide range of species types and combinations, including mixtures, the study provides a broad test of carbon dioxide and nitrogen interactions under contrasting low and high nitrogen supply rates. It also includes measurements of root biomass. Previous studies have been done with a single or few types of plant species. These studies had greater amounts of nitrogen added and included no below-ground biomass measures.

The article, "Nitrogen limitation constrains sustainability of ecosystem response to CO2," was written by Peter B. Reich, Sarah E. Hobbie, Tali Lee, David S. Ellsworth, Jason B. West, David Tilman, Johannes M.H. Knops, Shahid Naeem and Jared Trost.

Source: University of Michigan

Explore further: A guide to the 2014 Neptune opposition season

add to favorites email to friend print save as pdf

Related Stories

Lopwood and brushwood make high-grade charcoal

Jun 23, 2014

When the forestry machines have finished extracting timber, what is left are tops and branches – waste which cannot be used. However, according to researchers, it is possible to turn these heaps of lopwood ...

Greater granularity on anthropogenic emission

Jun 13, 2014

Improved estimates of anthropogenic emissions contribute to better overall air quality forecasts, thus allowing people to manage health conditions associated with air cleanliness.

Recommended for you

A guide to the 2014 Neptune opposition season

1 hour ago

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

Spitzer telescope witnesses asteroid smashup

18 hours ago

(Phys.org) —NASA's Spitzer Space Telescope has spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the ...

Informing NASA's Asteroid Initiative: A citizen forum

20 hours ago

In its history, the Earth has been repeatedly struck by asteroids, large chunks of rock from space that can cause considerable damage in a collision. Can we—or should we—try to protect Earth from potentially ...

User comments : 0