Julius Springer Prize for Applied Physics 2006 goes to Viola Vogel for pioneering work in bionanotechnology

Apr 11, 2006

This year's Julius Springer Prize for Applied Physics will be awarded to Dr. Viola Vogel for her creative and pioneering work on bionanotechnology exploring single molecule mechanics and nanomotors for technical applications. The award, accompanied by USD 5,000, will be presented during the 2006 Spring Meeting of the Materials Research Society (MRS) in San Francisco, CA on 18 April 2006.

Viola Vogel has deciphered engineering principles of biological nanosystems for the development of new technologies. Vogel has pioneered the use of biological motors to build assembly lines for biological and synthetic cargo at the nanoscale level, and has explored how mechanical forces can switch the functional states of proteins. This promises to lead to novel ways of combatting bacterial infections and engineering the interactions of cells with synthetic surfaces. Applications can also be found in tissue engineering and the development of new materials and pharmaceutical products.

Vogel is a professor in the Department of Materials at the Swiss Federal Institute of Technology (ETH) in Zürich and also heads the ETH's Laboratory for Biologically Oriented Materials. After completing her graduate research at the Max Planck Institute for Biophysical Chemistry, she received her Ph.D. in physics at Frankfurt/Main University, followed by two years as postdoctoral fellow at the University of California at Berkeley. She was a faculty member of the Department of Bioengineering at the University of Washington and was the founding director of the Seattle Center for Nanotechnology.

The Julius Springer Prize for Applied Physics recognizes researchers who have made an outstanding and innovative contribution to the fields of applied physics. It has been awarded annually since 1998 by the Editors-in-Chief of the Springer journals Applied Physics A – Materials Science & Processing and Applied Physics B – Lasers and Optics.

Source: Springer

Explore further: From tobacco to cyberwood

Related Stories

Historic Indian sword was masterfully crafted

Feb 10, 2015

The master craftsmanship behind Indian swords was highlighted when scientists and conservationists from Italy and the UK joined forces to study a curved single-edged sword called a shamsheer. The study, led ...

Japanese gold leaf artists worked on a nanoscale

Jul 02, 2014

Ancient Japanese gold leaf artists were truly masters of their craft. An analysis of six ancient Namban paper screens show that these artifacts are gilded with gold leaf that was hand-beaten to the nanometer ...

Recommended for you

From tobacco to cyberwood

5 hours ago

Swiss scientists from ETH Zurich have developed a thermometer that is at least 100 times more sensitive than previous temperature sensors. It consists of a bio-synthetic hybrid material of tobacco cells and nanotubes.

Scientists convert microbubbles to nanoparticles

8 hours ago

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

'Atomic chicken-wire' is key to faster DNA sequencing

12 hours ago

An unusual and very exciting form of carbon - that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research ...

3-D images of tiny objects down to 25 nanometres

13 hours ago

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.