New processing steps promise more economical ethanol production

Mar 30, 2006

Why isn't ethanol production growing by leaps and bounds in the face of higher gasoline prices? Ethanol production from cornstarch is a $10 billion dollar business in the United States and 4 billion gallons of ethanol will be produced in 2006. In his 2006 State of the Union address, President Bush called for doubling ethanol production by 2012, and replacing 75 percent of Middle Eastern oil with bioethanol from renewable materials by 2025.

"We have the technical ability, but making ethanol production economical is the problem," said Y.H. Percival Zhang, assistant professor of biological systems engineering in the College of Agriculture and Life Sciences at Virginia Tech.

Zhang has developed a more cost effective pretreatment process that he will report on at the 231st American Chemical Society National Meeting in Atlanta March 26-30.

Ethanol now comes from corn kernels. "But that is food," Zhang said. "If we want to produce 30 to 60 billion gallons of ethanol, which is what is needed to meet the President's goal, we have to use the entire plant, or the stover (leaves, stalks, and cobs), and leave the kernels as food." The largest challenge for bioconversion from raw materials to bioethanol is high processing costs, resulting in higher prices for bioethanol than for gasoline.

Corn stover is the most abundant agricultural residue in the United States. The challenge is separating the sugars from the lignocellulose -- the combination of lignin, hemicellulose, and cellulose that form plant cell walls. Many technologies have been developed to convert lignocellulose to sugars, but the costs are still high and sugar yields are low. "No one wants to take the risk -- to invest $1 billion in a large-size biorefinery based on lignocellulose," said Zhang. "Processing costs are also high. It requires chemicals, utilities, enzymes, and recycling in the pretreatment and the sequential processing stages."

Zhang's cost-effective pretreatment process that integrates three technologies – cellulose solvent pretreatment, concentrated acid saccharification, and organosolv, and overcomes the limitations of existing processes. Instead of a high pressure system that operates at between 150 and 250 degrees C, Zhang's "modest reaction" operates at atmospheric pressure and 50 C (120 F) to pretreat corn residue to free the solid polymeric sugars. In a several-step pretreatment system, Zhang uses a strong cellulose solvent instead of highly corrosive chemicals, high pressure, and high temperature to breakup the linkages among lignin, hemicellulose, and cellulose.

During Zhang's gentler process, there is no sugar degradation and inhibitor formation. In the following step, he creatively uses a highly volatile organic solvent to precipitate dissolved cellulose, extract lignin, and enable effective chemical recycling. After pretreatment and reagent recycling, lignocellulose can be fractionated into four products: lignin, hemicelluose sugars, amorphous cellulose, and acetic acid. "Co-products can generate more income, making biorefinery more profitable, and enable satellite biorefineries that fully utilize scattered lignocellulose resources," said Zhang. "For instance, lignin has many industrial uses, from glue to polymer substitutes and carbon fiber; and xylose can be converted to a healthy sweetening additive – xylitol, or to the precursors for nylon 6."

Amorphous cellulose, which is converted from crystalline cellulose, is another advantageous product from Zhang's process because in this form the cellulose material is more accessible for further hydrolysis, resulting in a higher sugar yield, higher hydrolysis rate, and less enzyme use. Zhang tested amorphous cellulose hydrolysis by adding special enzymes (Trichoderma cellulases) from Genencor International. The result is that about 97 percent of the cellulose is digested after 24 hours of the hydrolysis process.

Zhang, who has been at Virginia Tech since August 2005, began his research at Dartmouth Thayer School of Engineering, where he received his Ph.D., was a postdoctoral research associate, and then a research scientist. He and Lynd have applied for a U.S. patent for this pretreatment, which has been licensed to the bioethanol start-up company, Mascoma Co. After joining Virginia Tech, Zhang made another significant improvement based on the previous patent, and Virginia Tech has filed for a global patent.

Zhang is collaborating with the National Renewable Energy Laboratory and Oak Ridge National Laboratory, using NREL software to analyze the economic costs of various ethanol production strategies and ORNL facilities to test different enzymes and material performance. "NREL and ORNL have spent 30 years on lignocellulose processing, biocatalysis, and bioenergy research, and are glad to cooperate on new technologies which can effectively overcome the recalcitrance of lignocellulose," Zhang said. "We hope to soon establish the first pilot plant in Virginia based on this new technology with switchgrass."

Zhang will also present at the 28th Symposium on Biotechnology for Fuels and Chemicals in April.

Source: Virginia Tech

Explore further: Genomic data support early contact between Easter Island and Americas

add to favorites email to friend print save as pdf

Related Stories

Comcast wins more Internet customers, ad sales up

27 minutes ago

Comcast Corp.'s third-quarter net income jumped 50 percent in the third quarter, helped by a one-time tax settlement, growth in Internet subscribers and fewer defectors from its cable service.

Helping sweet cherries survive the long haul

32 minutes ago

A new study says that cherry producers need to understand new intricacies of the production-harvest-marketing continuum in order to successfully move sweet cherries from growers to end consumers. For example, the Canadian ...

Christian Bale to play Apple's Steve Jobs

47 minutes ago

Oscar-winner Christian Bale—best known for his star turn as Batman in the blockbuster "Dark Knight" films—will play Apple co-founder Steve Jobs in an upcoming biopic.

Netflix to stream new online TV series, 'Bloodline'

48 minutes ago

Fresh from commercial and critical success with hit shows "House of Cards" and "Orange is the New Black," Netflix on Thursday announced a new online series, "Bloodline," set for release in March.

YEATS protein potential therapeutic target for cancer

48 minutes ago

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Recommended for you

World population likely to peak by 2070

2 hours ago

World population will likely peak at around 9.4 billion around 2070 and then decline to around 9 billion by 2100, according to new population projections from IIASA researchers, published in a new book, World Population and ...

Bullying in schools is still prevalent, national report says

3 hours ago

Despite a dramatic increase in public awareness and anti-bullying legislation nationwide, the prevalence of bullying is still one of the most pressing issues facing our nation's youth, according to a report by researchers ...

Insider trading study shows stronger enforcement

5 hours ago

The first major study of the enforcement of Australia's insider trading laws has shown the number of insider trading cases brought by the Australian Securities and Investment Commission (ASIC) is increasing, ...

User comments : 0