Scientists observe solitary vibrations in uranium

Mar 30, 2006

Los Alamos scientists, working with collaborators from around the world, recently observed experimental evidence of solitary vibrations (solitons) in a solid. First observed as localized waves on the surface of water more than a century ago, the concept of solitons in solids was only theorized as possible two decades ago. The results of their discovery of random localized vibrations in a 3-D solid will add new knowledge to the field of solid-state physics and could have implications for other areas of science and technology.

In research described in this week's issue of Physical Review Letters, Los Alamos scientist Michael Manley and his colleagues from Oak Ridge and Argonne national laboratories and the Institute for Transuranium Elements in Karlsruhe, Germany describe their use of x-ray and neutron scattering experiments to identify random localized vibrations, called lattice solitons, in uranium crystals at high temperatures, possibly caused by strong electron-phonon interactions.

According to Manley, "these results are really exciting on several levels. Although the idea of a localized energy wave goes back to the late 1800s when solitons were first observed, by the 1980s new theories proposed the possibility of seeing them in discrete solids. Scientists have been looking for localized vibrations in atomic structures ever since. No one ever imagined that they would play such an important role in the physical properties of uranium metal, so this was quite a surprise."

Scottish scientist John Scott Russell first described the soliton in August 1834 after observing the phenomenon on the surface of water in Scotland's Union canal. In the late 1980s, scientists theorized that solitons might exist in solids and molecules, calling them intrinsic localized modes or discrete breathers, but had no physical evidence of their existence.

Although the discovery will have immediate implications for uranium science and the field of solid-state physics, the potential applications of this discovery in other fields are yet to be seen. They might include new explanations of the roles that localized vibrations may play in breaking chemical bonds in biological processes. The new knowledge might also provide the scientific underpinnings for the development of future devices that exploit localized energy waves.

Source: Los Alamos National Laboratory

Explore further: The birth of topological spintronics

add to favorites email to friend print save as pdf

Related Stories

Scientists discover new water waves

Jul 19, 2011

(PhysOrg.com) -- By precisely shaking a container of shallow water, researchers have observed wave behavior that has never been seen before. In a new study, Jean Rajchenbach, Alphonse Leroux, and Didier Clamond ...

Recommended for you

Unleashing the power of quantum dot triplets

1 hour ago

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Chemist develops X-ray vision for quality assurance

1 hour ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

1 hour ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

18 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

20 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

User comments : 0