Scientists observe solitary vibrations in uranium

Mar 30, 2006

Los Alamos scientists, working with collaborators from around the world, recently observed experimental evidence of solitary vibrations (solitons) in a solid. First observed as localized waves on the surface of water more than a century ago, the concept of solitons in solids was only theorized as possible two decades ago. The results of their discovery of random localized vibrations in a 3-D solid will add new knowledge to the field of solid-state physics and could have implications for other areas of science and technology.

In research described in this week's issue of Physical Review Letters, Los Alamos scientist Michael Manley and his colleagues from Oak Ridge and Argonne national laboratories and the Institute for Transuranium Elements in Karlsruhe, Germany describe their use of x-ray and neutron scattering experiments to identify random localized vibrations, called lattice solitons, in uranium crystals at high temperatures, possibly caused by strong electron-phonon interactions.

According to Manley, "these results are really exciting on several levels. Although the idea of a localized energy wave goes back to the late 1800s when solitons were first observed, by the 1980s new theories proposed the possibility of seeing them in discrete solids. Scientists have been looking for localized vibrations in atomic structures ever since. No one ever imagined that they would play such an important role in the physical properties of uranium metal, so this was quite a surprise."

Scottish scientist John Scott Russell first described the soliton in August 1834 after observing the phenomenon on the surface of water in Scotland's Union canal. In the late 1980s, scientists theorized that solitons might exist in solids and molecules, calling them intrinsic localized modes or discrete breathers, but had no physical evidence of their existence.

Although the discovery will have immediate implications for uranium science and the field of solid-state physics, the potential applications of this discovery in other fields are yet to be seen. They might include new explanations of the roles that localized vibrations may play in breaking chemical bonds in biological processes. The new knowledge might also provide the scientific underpinnings for the development of future devices that exploit localized energy waves.

Source: Los Alamos National Laboratory

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Scientists discover new water waves

Jul 19, 2011

(PhysOrg.com) -- By precisely shaking a container of shallow water, researchers have observed wave behavior that has never been seen before. In a new study, Jean Rajchenbach, Alphonse Leroux, and Didier Clamond ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.