Spitzer and Deep Impact Build Recipe for Comet Soup

Sep 07, 2005
Spitzer and Deep Impact Build Recipe for Comet Soup

When Deep Impact smashed into comet Tempel 1 on July 4, 2005, it released the ingredients of our solar system's primordial "soup." Now, astronomers using data from NASA's Spitzer Space Telescope and Deep Impact have analyzed that soup and begun to come up with a recipe for what makes planets, comets and other bodies in our solar system.

Image: Hungry for a comet? Perhaps not, but astronomers using data from NASA's Spitzer Space Telescope and the Deep Impact mission are putting together a recipe for comet "soup" - the primordial stuff of planets, comets and other bodies in our solar system.

"The Deep Impact experiment worked," said Dr. Carey Lisse of Johns Hopkins University's Applied Physics Laboratory, Laurel, Md. "We are assembling a list of comet ingredients that will be used by other scientists for years to come." Lisse is the team leader for Spitzer's observations of Tempel 1. He presented his findings this week at the 37th annual meeting of the Division of Planetary Sciences in Cambridge, England.

Spitzer watched the Deep Impact encounter from its lofty perch in space. It trained its infrared spectrograph on comet Tempel 1, observing closely the cloud of material that was ejected when Deep Impact's probe plunged below the comet’s surface. Astronomers are still studying the Spitzer data, but so far they have spotted the signatures of a handful of ingredients, essentially the meat of comet soup.

These solid ingredients include many standard comet components, such as silicates, or sand. And like any good recipe, there are also surprise ingredients, such as clay and chemicals in seashells called carbonates. These compounds were unexpected because they are thought to require liquid water to form.

"How did clay and carbonates form in frozen comets?" asked Lisse. "We don't know, but their presence may imply that the primordial solar system was thoroughly mixed together, allowing material formed near the Sun where water is liquid, and frozen material from out by Uranus and Neptune, to be included in the same body."

Also found were chemicals never seen before in comets, such as iron-bearing compounds and aromatic hydrocarbons, found in barbecue pits and automobile exhaust on Earth.

The silicates spotted by Spitzer are crystallized grains even smaller than sand, like crushed gems. One of these silicates is a mineral called olivine, found on the glimmering shores of Hawaii's Green Sands Beach.

Planets, comets and asteroids were all born out of a thick soup of chemicals that surrounded our young Sun about 4.5 billion years ago. Because comets formed in the outer, chilly regions of our solar system, some of this early planetary material is still frozen inside them.

Having this new grocery list of comet ingredients means theoreticians can begin testing their models of planet formation. By plugging the chemicals into their formulas, they can assess what kinds of planets come out the other end.

"Now, we can stop guessing at what's inside comets," said Dr. Mike A'Hearn, principal investigator for the Deep Impact mission, University of Maryland, College Park. "This information is invaluable for piecing together how our own planets as well as other distant worlds may have formed."

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech. The University of Maryland, College Park, conducted the overall mission management for Deep Impact, and JPL handled project management for the mission for NASA's Science Mission Directorate.

Source: NASA

Explore further: Planck helps to understand the macrostructure of the universe

Related Stories

Unusual asteroid suspected of spinning to explosion

Mar 20, 2015

A team led by astronomers from the Jagiellonian University in Krakow, Poland, recently used the W. M. Keck Observatory in Hawaii to observe and measure a rare class of "active asteroids" that spontaneously ...

A recipe for returning Pluto to full planethood

Feb 20, 2015

A storm is brewing, a battle of words and a war of the worlds. The Earth is not at risk. It is mostly a civil dispute, but it has the potential to influence the path of careers. In 2014, a Harvard led debate ...

Gullies on Vesta suggest past water-mobilized flows

Jan 23, 2015

(Phys.org)—Protoplanet Vesta, visited by NASA's Dawn spacecraft from 2011 to 2013, was once thought to be completely dry, incapable of retaining water because of the low temperatures and pressures at its ...

Recommended for you

Image: The tumultuous heart of the Large Magellanic Cloud

11 hours ago

A scene of jagged fiery peaks, turbulent magma-like clouds and fiercely hot bursts of bright light. Although this may be reminiscent of a raging fire or the heart of a volcano, it actually shows a cold cosmic ...

Total lunar eclipse before dawn on April 4th

11 hours ago

An unusually brief total eclipse of the Moon will be visible before dawn this Saturday, April 4th, from western North America. The eclipse happens on Saturday evening for Australia and East Asia.

Cassini: Return to Rhea

Mar 30, 2015

After a couple of years in high-inclination orbits that limited its ability to encounter Saturn's moons, NASA's Cassini spacecraft returned to Saturn's equatorial plane in March 2015.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.