Climate change will affect carbon sequestration in oceans, model shows

Sep 07, 2005

An Earth System model developed by researchers at the University of Illinois at Urbana-Champaign indicates that the best location to store carbon dioxide in the deep ocean will change with climate change.

The direct injection of carbon dioxide deep into the ocean has been suggested as one method to help control rising carbon dioxide levels in the atmosphere and mitigate the effects of global warming. But, because the atmosphere interacts with the oceans, the net uptake of carbon dioxide and the oceans' sequestration capacity could be affected by climate change.

"Through a number of physical and chemical interactive mechanisms, the ocean circulation could change and affect the retention time of carbon dioxide injected into the deep ocean, thereby indirectly altering oceanic carbon storage and atmospheric carbon dioxide concentration," said Atul Jain, a professor of atmospheric sciences. "Where the carbon dioxide is injected turns out to be a very important issue."

Developed by Jain and graduate student Long Cao, the Integrated Science Assessment Model is a coupled climate-ocean-terrestrial biosphere-carbon cycle model that allows extensive exploration of key physical and chemical interactions among individual components of the Earth system, as well as among carbon cycle, climate change and ocean circulation.

"A good understanding of climate change, ocean circulation, the ocean carbon cycle and feedback mechanisms is crucial for a reliable projection of atmospheric carbon dioxide concentration and resultant climate change," Jain said. The model is described in the September issue of the Journal of Geophysical Research -- Oceans.

Using the model, Jain and Cao studied the effectiveness of oceanic carbon sequestration by the direct injection of carbon dioxide at different locations and depths.

They found that climate change has a big impact on the oceans' ability to store carbon dioxide. The effect was most pronounced in the Atlantic Ocean. The researchers presented their findings in the May issue of the journal Geophysical Research Letters.

"When we ran the model without the climate feedback mechanisms, the Pacific Ocean held more carbon dioxide for a longer time," Cao said. "When we added the feedback mechanisms, however, the retention time in the Atlantic Ocean proved far superior. Injecting carbon dioxide into the Atlantic Ocean would be more effective than injecting it at the same depth in either the Pacific Ocean or the Indian Ocean."

Future climate change could affect both the uptake of carbon dioxide in the ocean basins and the ocean circulation patterns themselves, Jain said. As sea-surface temperatures increase, the density of the water decreases and thus slows the ocean thermohaline circulation, so the ocean's ability to absorb carbon dioxide also decreases. This leaves more carbon dioxide in the atmosphere, exacerbating the problem.

"At the same time, the reduced ocean circulation will decrease the ocean mixing, which decreases the ventilation to the atmosphere of carbon injected into the deep ocean," Jain said. "Our model results show that this effect is more dramatic in the Atlantic Ocean."

Sequestering carbon in the deep ocean is not a permanent solution for reducing the amount of carbon dioxide in the atmosphere, the researchers report. "Carbon dioxide dumped in the oceans won't stay there forever," Jain said. "Eventually it will percolate to the surface and into the atmosphere."

Source: University of Illinois at Urbana-Champaign

Explore further: Testing immune cells on the International Space Station

add to favorites email to friend print save as pdf

Related Stories

New study outlines 'water world' theory of life's origins

22 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Building better soybeans for a hot, dry, hungry world

17 hours ago

(Phys.org) —A new study shows that soybean plants can be redesigned to increase crop yields while requiring less water and helping to offset greenhouse gas warming. The study is the first to demonstrate ...

Warm US West, cold East: A 4,000-year pattern

20 hours ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Recommended for you

Testing immune cells on the International Space Station

7 hours ago

The human body is fine-tuned to Earth's gravity. A team headed by Professor Oliver Ullrich from the University of Zurich's Institute of Anatomy is now conducting an experiment on the International Space Station ...

Easter morning delivery for space station

13 hours ago

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

NASA's space station Robonaut finally getting legs

Apr 19, 2014

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

User comments : 0

More news stories

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.