American Chemical Society session to focus on T-rays - the next wave in imaging technology

Aug 26, 2005

A versatile technology that can spot cracks in space shuttle foam, while also offering the potential to see biological agents through a sealed envelope and detect tumors without harmful radiation, will be the focus of a full-day symposium at the 230th national meeting of the American Chemical Society in Washington, D.C. The session will be co-chaired by T-ray experts Xi-Cheng Zhang, a physicist and engineer at Rensselaer Polytechnic Institute, and Charles Schmuttenmaer, a chemist at Yale University.

T-rays are the next wave in imaging and sensing technology. Based on the terahertz (THz) region of the electromagnetic spectrum -- defined by frequencies from 0.1 to 10 THz, just between infrared light and microwave radiation -- T-rays are opening the door to a wide variety of applications.

"The last 20 years have seen a revolution in pulsed THz science and technology," says Zhang, the J. Erik Jonsson '22 Distinguished Professor and director of the Center for Terahertz Research at Rensselaer. "It is an extremely attractive research field with interest from sectors as diverse as the semiconductor materials, medical, manufacturing, space, and defense industries."

Zhang and Schmuttenmaer planned the symposium to introduce T-rays to the analytical chemistry community. Twelve invited speakers will discuss various aspects of the technology at the symposium, "Analytic Applications of Terahertz Spectroscopy," which will take place from 8:30 a.m. to 4:45 p.m. Tuesday, Aug. 30, in Room 155 of the Washington Convention Center.

Objects at room temperature emit thermal energy in the THz range. This radiation is extremely useful for sensing and imaging objects, with major advantages over other techniques, according to Zhang. T-ray systems offer more than just images: they can provide valuable spectroscopic information about the composition of a material, especially in chemical and biological species -- something that X-rays may not be able to do. T-rays are also safer than X-rays for biological applications, Zhang says, with photon energies that are 1 million times weaker than X-ray photons.

Until recently, researchers have had great difficulty harnessing the potential of the THz region, largely because of a lack of suitable radiation sources. Zhang will demonstrate new advances achieved at Rensselaer that allow for the sensing of extremely small objects on the nanometer scale, as well as at large distances of more than 100 meters -- an essential improvement for national security applications such as remote sensing of explosives. He will also discuss recent collaborations with NASA, where THz imaging successfully detected defects in space shuttle foam.

Other speakers will discuss T-ray applications that could enable the label-free characterization of genetic material, detect a C-4 explosive hidden in the mail, and help researchers understand the complex dynamics involved in protein folding.

Advanced materials research has provided new and higher power sources, and interest in THz sensing and imaging has exploded as a result. "Biomedical imaging and genetic diagnostics are two of the most obvious potential applications of this technology," Zhang says. "But equally promising is the ability to investigate material characteristics, probe distant galaxies, and study quantum interactions."

Zhang leads the Center for Terahertz Research at Rensselaer, where more than 30 scientists actively conduct research and development in THz wave science and technology. A decade ago at Rensselaer, Zhang was the first to use zinc-tellurium crystals as pulsed THz wave sensors. Now the zinc-tellurium THz emitters and detectors are used in more than 100 laboratories around the world.

A $1 million grant from the Keck Foundation helped provide the center's 5,000-square-foot Keck Laboratory with state-of-the-art equipment. Scientists and engineers from more than 100 universities, companies, medical schools, and clinics have visited Rensselaer's THz facilities, and the THz team has helped scientists from 25 countries learn to use the technology. Zhang holds 13 patents, with more pending.

Zhang is one of 18 Rensselaer researchers presenting at the ACS meeting in Washington, along with Rensselaer President Shirley Ann Jackson, who will be speaking at a special event celebrating the 10th anniversary of the ACS Scholars Program. Her talk will focus on the urgent need to build the next generation of scientists, which she asserts requires fostering a national plan and a national will to succeed.

Source: Rensselaer Polytechnic Institute

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

IOC defends Rio legacy amid green protests

20 hours ago

Ecological protests on Saturday dogged the final day of an International Olympic Committee executive board meeting in Rio as green campaigners slated the choice of a nature reserve to hold the golf event ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.