Study Reconciles Long-Standing Contradiction of Deep-Earth Dynamics

Aug 25, 2005
Study Reconciles Long-Standing Contradiction of Deep-Earth Dynamics

Scientists at Columbia University's Lamont-Doherty Earth Observatory (LDEO) have solved a long-standing contradiction about the workings of the deep Earth.

Image: The chemical composition of ocean-island lavas support the idea that the Earth's deep mantle has been continually moving and mixing. Credit: LDEO

While some geochemists have argued that parts of the deep mantle have remained unchanged since the formation of the Earth, some geophysicists and others have believed that the entire mantle has been moving throughout geologic time. The question of whether the deep-Earth changes is central to scientists' understanding of the process of heat loss from deep beneath the surface.

LDEO earth scientists Cornelia Class and Steven Goldstein now show that the evidence favors a moving mantle, with the deepest parts of the Earth affected by the same tectonic processes that occur at the surface. The study appears in the Aug. 25 issue of the journal Nature.

"For 30 years scientists have debated whether there is a layer of the mantle that has remained unchanged since the formation of the Earth," said Class. "We found the strongest evidence yet that indicates the opposite is true."

Class and Goldstein's re-evaluation of this concept of the inner Earth is based on their work with two new databases: the Petrological Database of Ocean Floor Basalts (PetDB) and Geochemistry of Rocks from the Oceans and Continents (GEOROC).

Scientists have known that upper mantle basalt found at mid-ocean ridges, formed by sea-floor spreading, comes from previously formed oceanic and continental crust. The new global data synthesis demonstrates that ocean island lavas, chemically most like mid-ocean ridge basalt, were previously processed by plate tectonics, say Class and Goldstein, indicating that the deep mantle has been continually moving and mixing.

This result adds to growing evidence "that most of Earth's mantle has been subject to the same forces that drive the movements of Earth's crust," said Sonia Esperanca, a program director in the National Science Foundation (NSF)'s Division of Earth Sciences, which funded the research.

Source: NSF

Explore further: Video gives astronaut's-eye view inside NASA's Orion spacecraft

add to favorites email to friend print save as pdf

Related Stories

Does dark magma lurk in deep Earth?

Nov 13, 2014

(Phys.org) —A key to understanding Earth's evolution is to look deep into the lower mantle—a region some 400 to 1,800 miles (660 to 2,900 kilometers) below the surface, just above the core. Data have ...

Recommended for you

Scientists 'map' water vapor in Martian atmosphere

5 hours ago

Russian scientists from the Space Research Institute of the Russian Academy of Sciences and the Moscow Institute of Physics and Technology (MIPT), together with their French and American colleagues, have ...

Water fleas prepared for trip to space

10 hours ago

Local 'Daphnia' waterfleas are currently being prepared by scientists at the University of Birmingham for their trip to the International Space Station (ISS), where they will be observed by astronauts.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.