Quantum Computer Science on the Internet

Jul 31, 2004

A simulated quantum computer went online on the Internet last month. With the ability to control 31 quantum bits, it is the most powerful of its type in the world. Software engineers can use it to test algorithms that might one day be applied in real computer networks.

Many computing problems in fundamental physics or mathematics require huge amounts of processing power – far more than present-day computers are capable of providing. A well-known example is the prime factoring of very large numbers: Computer scientists use this technique to measure computer performance, and apply them for advanced encryption systems. Quantum computers, based on the laws of quantum physics, would be much more efficient at solving such complex problems than today’s “ordinary” computers. Unlike classical binary digits (0 or 1), their smallest units of information can assume any value between 0 and 1. This could permit massively parallel computation and multiplies storage capacity by a factor of many billions.

But quantum computers are still at a very early stage of development. The hardware requirements are extremely demanding and the few existing quantum computing devices only have a limited processing capacity of at best 7 qubits (27 = 128 bits processing size).

Since mid-June, a research group at the Fraunhofer Institute for Computer Architecture and Software Technology FIRST has been offering Internet access to the world’s most powerful (31 qubit) quantum simulator, at www.qc.fraunhofer.de. Using a standard browser, interested parties in research and industry can see how quantum waves and atomic particles are used to process information, and thus gain a better understanding of how quantum processes work. The demonstration area of the site contains examples of several standard problems. Users can set up their own new algorithms and logical operations after registering online (free of charge). The simulator demonstrates the way in which a quantum computer would go about solving the calculation. Is the newly developed algorithm suitable for quantum computing, and does it achieve the desired result?

“The main focus of our project lies in the simulation of Hamiltonians, i.e. the experimental implementation of quantum algorithms,” emphasizes Helge Rosé. “This will give us a better understanding of the differences between real and theoretically ideal quantum computing devices.” It is also a means of gathering knowledge that will later be needed to build real quantum computers. “Members of the quantum computing community have no need to wait for the next generation of quantum computers – they can test their developments and ideas today,” the project manager concludes.

Source: Fraunhofer-Gesellschaft

Explore further: Researchers discover low-grade nonwoven cotton picks up 50 times own weight of oil

add to favorites email to friend print save as pdf

Related Stories

Exotic state of matter propels quantum computing theory

Jul 23, 2014

So far it exists mainly in theory, but if invented, the large-scale quantum computer would change computing forever. Rather than the classical data-encoding method using binary digits, a quantum computer would process information ...

Unleashing the power of quantum dot triplets

Jul 24, 2014

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

A transistor-like amplifier for single photons

19 hours ago

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years ...

Recommended for you

Light pulses control graphene's electrical behavior

23 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

User comments : 0