Unique NASA Science Lab Tackles 'Sticky' Issue of Lunar Dust

Aug 24, 2005

In the safety-conscious, science-driven business of aerospace research, where laboratories routinely are set up as "clean rooms," in which sterility is paramount, Dr. Mian Abbas' lab is something of an anomaly. The word "dust" is even in its name.

Not that the "Dusty Plasma Lab," part of the National Space Science and Technology Center in Huntsville, Ala., is any less well maintained than any other professional research facility. The dust found here is unique for another reason. It comes from Earth's Moon.

That dust -- currently a single vial's worth, barely a teaspoon full -- is the focus of a vital study to help NASA send explorers back to the Moon in coming decades. Since April, Abbas, a space scientist at NASA's Marshall Space Flight Center in Huntsville, has been using a volleyball-sized vacuum chamber in the Dusty Plasma Lab to simulate the Moon's airless environment. With his partners, Marshall Center astrophysicist Dr. Paul Craven and Dragana Tankosic, a doctoral student in physics at the University of Alabama in Huntsville, Abbas is suspending grains of lunar dust, one at a time, in a vacuum in the chamber.

The team bombards each grain -- part of a sample scooped up in 1972 by astronauts during the Apollo 17 Moon mission -- with ultraviolet radiation. This gives each particle an electrostatic charge, similar to the charge a person acquires when walking across a heavy carpet in wool socks. Abbas and his partners study how dust grains in the lunar environment charge and discharge, shedding their electrostatic charge the way touching a metal door in a carpeted room can give a person a brief, tingling shock.

The goal for Abbas and his team is to log the physical characteristics and behavior of dust grains ranging in size from 2 microns to 20 microns -- the particle sizes most likely to cause problems during long-term Moon missions. How big is 20 microns? Look at the period at the end of this sentence -- it's just shy of 400 microns in diameter.

"Working with such tiny particles is a test of patience," Abbas acknowledges, smiling. "But we have much to learn about the properties and behavior of lunar dust if we hope to conduct long-term or even permanent science-oriented operations on the Moon."

That powdery dust, the by-product of fearsome meteor storms that pounded the Moon for eons, coats much of the lunar surface. A build-up of this dust could damage or destroy sensitive machinery and mechanical equipment without proper protection. As the Apollo astronauts discovered, lunar dust clings to everything, from gloves and boots to vehicles.

Scientists theorize that lunar dust must be electrostatically charged by incidents of high ultraviolet solar radiation and by the solar wind -- charged particles constantly flowing from the Sun. When ultraviolet radiation hits the Moon's "day side," the half that perpetually faces the Sun, it knocks electrons out of atoms in the lunar soil. This creates a positive charge in countless dust specks, which repel one another the way identically charged magnets react in close proximity. Charged dust, scientists theorize, is pushed upward, often rising hundreds of feet in a phenomenon dubbed "fountaining." The particles then discharge, sink to the surface and the cycle repeats. On the Moon's night side, the solar wind has the same effect, but instead of positively charging atoms, it creates negatively charged ones. The dust behaves identically there, however, fountaining until the particles discharge and fall back.

To date, no lunar landing mission has stayed on the surface long enough for the dust to pose a real concern. "But for future long-duration missions, we obviously need to pursue dust abatement and mitigation strategies," Abbas said. "We need to ensure sensitive equipment, vehicles and spacesuits are protected."

There's more at risk than machinery. Earlier this year, astrobiologists at NASA's Ames Research Center in Moffett Field, Calif., conducted laboratory studies that suggest lunar dust could pose human health threats. The dust motes aren't poisonous, but unlike dust on Earth, buffed by atmospheric friction and interaction with the elements, lunar dust remains coarse and jagged. If inhaled -- when astronauts track the dust back into their pressurized landers or flight vehicles -- particles can embed themselves in the lungs like burrs, and cannot be easily expelled. The potential result? Long-term ailments similar to silicosis, a respiratory illness typically contracted by stonecutters and others exposed to ground-up or blasted rock.

Lunar dust research is expected to continue into 2007 and beyond, Abbas said, noting that the work is vital to overcoming problems associated with lunar dust -- a critical step in realizing the Vision for Space Exploration, NASA's mission to return human explorers to the Moon and enable human exploration of the Solar System.

"We are making unprecedented observations and developing mathematical models for the behavior of these dust particles," he says. "Not only will this research enable NASA to learn to efficiently remove accumulated dust, but in time it could lead to advances such as dust-repellent clothing, hardware and building materials."

Advances, no doubt, that will leave those pesky lunar particles in the dust.

Source: NASA

Explore further: MAVEN studies passing comet and its effects

add to favorites email to friend print save as pdf

Related Stories

Seven samples from the solar system's birth

Apr 28, 2014

At this year's Lunar and Planetary Science Conference (LPSC), scientists reported that, after eight painstaking years of work, they have retrieved seven particles of interstellar dust from NASA's Stardust ...

Red moon at night; stargazer's delight

Apr 16, 2014

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

NASA Goddard plays major role in NASA lunar mission

Aug 22, 2013

(Phys.org) —In partnership with NASA's Ames Research Center in Silicon Valley, Calif., Goddard's Wallops Flight Facility will launch the Lunar Atmosphere and Dust Environment Explorer known as LADEE in September, a roboti ...

Recommended for you

MAVEN studies passing comet and its effects

1 minute ago

NASA's newest orbiter at Mars, MAVEN, took precautions to avoid harm from a dust-spewing comet that flew near Mars today and is studying the flyby's effects on the Red Planet's atmosphere.

POLARBEAR seeks cosmic answers in microwave polarization

2 minutes ago

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

How to safely enjoy the October 23 partial solar eclipse

11 minutes ago

2014 – a year rich in eclipses. The Moon dutifully slid into Earth's shadow in April and October gifting us with two total lunars. Now it's the Sun's turn. This Thursday October 23 skywatchers across much ...

How to grip an asteroid

52 minutes ago

For someone like Edward Fouad, a junior at Caltech who has always been interested in robotics and mechanical engineering, it was an ideal project: help develop robotic technology that could one day fly on ...

New radio telescope ready to probe

3 hours ago

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

Image: Comet 67P/Churyumov–Gerasimenko

3 hours ago

It was 45 years ago when astronomer Klim Churyumov and Svetlana Gerasimenko, one of his researchers, unwittingly began a new chapter in the history of space exploration.

User comments : 0