Global Warming Models Come Under Physicist's Scrutiny

Jul 30, 2004

Two University of Rochester studies published in the latest issue of Geophysical Research Letters underline how uncertain and complex the understanding of global climate can be. Both reports emphasize some of the shortcomings in current weather models that scientists use to determine the effect of carbon dioxide on the Earth's average temperature.

The first paper compares temperature data from several altitudes above the Earth’s surface with what the top three internationally used global weather models predict happens at these altitudes when carbon dioxide is introduced. David Douglass, professor of physics at the University, used data gathered from satellites, radio-born weather balloons and other sources recorded over the last 20 years. He shows that these global weather models predict that as carbon dioxide increases, it should affect the temperatures of higher elevations more than it does at ground level. Douglass’s analysis suggests that while the models do roughly match ground temperatures as carbon dioxide increased over the last 20 years, the mid- to high-tropospheric levels of the atmosphere actually cooled.

“The models are relatively accurate at predicting the temperatures at the Earth’s surface, “says Douglass, “but when you go a few miles up, they diverge dramatically. The models are really challenged to explain these results.”

Though the study doesn’t suggest what might be causing the discrepancy, it clearly shows an area of disagreement that today’s global models need to address in order to increase their accuracy, especially in the time of such hot-button issues as carbon dioxide’s effect on global warming.

Douglass’s second paper in the same journal adds weight to the veracity of satellite temperature readings over the last two decades. Ever since satellites have been equipped to read the Earth’s temperature from orbit, there has been a roughly one-degree disparity between the satellite results and those observed directly from measurements taken at the surface itself. The cause of the disparity has been a source of contention over the last 20 years. In the earlier years, many scientists assumed that the problem was due to satellite error, but newer satellites continue to reinforce the earlier measurements. The Earth seems about a degree cooler when measured by the satellites than it does when measured at ground or sea level. Douglass has turned to a third independent source for additional temperature data, which includes temperatures recorded by weather balloons.

“Weather balloons might seem like an odd way to measure the temperature of the surface of the Earth until you realize that the first temperature reading is taken before the balloon has launched,” says Douglass.

The number of weather balloon readings is not as extensive as the number of conventional surface readings, but they do align much more closely with the satellite readings than those of the surface readings. Lending more weight to the satellite temperatures would mean revising downward the global temperature, which would have implications for the global warming outlook. Both the satellite and balloon data sets do suggest that the overall temperature is increasing, but the increase is significantly less than the one-degree increase noted by surface thermometers.

The Rochester study also shows that the disparity between surface and satellite temperatures seems to exist mostly over the oceans, suggesting that the difference between the method of taking the Earth’s temperature over water may contribute to the disparity. Douglass notes that surface temperature of the Earth’s oceans is taken from the surface water itself, rather than the air as weather balloons do, and that this may account for the difference.

Source: University of Rochester

Explore further: Mysteries of space dust revealed

add to favorites email to friend print save as pdf

Related Stories

FIXD tells car drivers via smartphone what is wrong

3 hours ago

A key source of anxiety while driving solo, when even a bothersome back-seat driver's comments would have made you listen: the "check engine" light is on but you do not feel, smell or see anything wrong. ...

Team pioneers strategy for creating new materials

5 hours ago

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Shell files new plan to drill in Arctic

5 hours ago

Royal Dutch Shell has submitted a new plan for drilling in the Arctic offshore Alaska, more than one year after halting its program following several embarrassing mishaps.

Aging Africa

5 hours ago

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

Recommended for you

Mysteries of space dust revealed

8 hours ago

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

14 hours ago

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

How can we find tiny particles in exoplanet atmospheres?

14 hours ago

It may seem like magic, but astronomers have worked out a scheme that will allow them to detect and measure particles ten times smaller than the width of a human hair, even at many light-years distance.  ...

Spitzer telescope witnesses asteroid smashup

Aug 28, 2014

(Phys.org) —NASA's Spitzer Space Telescope has spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the ...

User comments : 0