Supernova 1987A: Fast Forward to the Past

Aug 18, 2005
Supernova 1987A: Fast Forward to the Past

Recent Chandra observations have revealed new details about the fiery ring surrounding the stellar explosion that produced Supernova 1987A. The data give insight into the behavior of the doomed star in the years before it exploded, and indicate that the predicted spectacular brightening of the circumstellar ring has begun.

Image credit: X-ray: NASA/CXC/PSU/S.Park & D.Burrows.; Optical: NASA/STScI/CfA/P.Challis

The supernova occurred in the Large Magellanic Cloud, a galaxy only 160,000 light years from Earth. The outburst was visible to the naked eye, and is the brightest known supernova in almost 400 years. The site of the explosion was traced to the location of a blue supergiant star called Sanduleak -69º 202 (SK -69 for short) that had a mass estimated at approximately 20 Suns.

Subsequent optical, ultraviolet and X-ray observations have enabled astronomers to piece together the following scenario for SK -69: about ten million years ago the star formed out of a dark, dense, cloud of dust and gas; roughly a million years ago, the star lost most of its outer layers in a slowly moving stellar wind that formed a vast cloud of gas around it; before the star exploded, a high-speed wind blowing off its hot surface carved out a cavity in the cool gas cloud.

The intense flash of ultraviolet light from the supernova illuminated the edge of this cavity to produce the bright ring seen by the Hubble Space Telescope. In the meantime the supernova explosion sent a shock wave rumbling through the cavity.

In 1999, Chandra imaged this shock wave, and astronomers have waited expectantly for the shock wave to hit the edge of the cavity, where it would encounter the much denser gas deposited by the red supergiant wind, and produce a dramatic increase in X-radiation. The latest data from Chandra and the Hubble Space Telescope indicate that this much-anticipated event has begun.

Optical hot-spots now encircle the ring like a necklace of incandescent diamonds (image on right). The Chandra image (left) reveals multimillion-degree gas at the location of the optical hot-spots.


Image: Illustration of Dynamics of Supernova 1987A. Long ago, the massive star that produced Supernova 1987A lost most of its outer layers in a slowly moving stellar wind that formed a vast cloud of gas. Before the star exploded, a high-speed wind from the star carved out a cavity in the cool gas cloud. The red ring in the illustration represents the inner edge of the cloud of cool gas. The fingers protruding inward were produced by the interaction of the high-speed wind with the dense circumstellar cloud. The collision of the outward-moving supernova shock wave (yellow) with the dense fingers of cool gas produce bright spots (white) of optical and X-ray emission. The expanding debris (blue) of the exploded star lags behind the shock wave and, except for a thin shell around the outer edge (gold), is too cool to produce X-rays. (Illustration: NASA/CXC/M.Weiss)

X-ray spectra obtained with Chandra provide evidence that the optical hot-spots and the X-ray producing gas are due to a collision of the outward-moving supernova shock wave with dense fingers of cool gas protruding inward from the circumstellar ring (see illustration). These fingers were produced long ago by the interaction of the high-speed wind with the dense circumstellar cloud.

The dense fingers and the visible circumstellar ring represent only the inner edge of a much greater, unknown amount of matter ejected long ago by SK -69. As the shock wave moves into the dense cloud, ultraviolet and X-radiation from the shock wave will heat much more of the circumstellar gas.

Then, as remarked by Richard McCray, one of the scientists involved in the Chandra research, "Supernova 1987A will be illuminating its own past."

Source: Chandra X-ray Center

Explore further: SpaceX launches supplies to space station (Update)

add to favorites email to friend print save as pdf

Related Stories

ISOLDE sheds light on dying stars

Apr 04, 2014

What happens inside a dying star? A recent experiment at CERN's REX accelerator offers clues that could help astrophysicists to recalculate the ages of some of the largest explosions in the universe.

Image: Star-forming region ON2

Mar 24, 2014

(Phys.org) —Massive stars are born in tumultuous clouds of gas and dust. They lead a brief but intense life, blowing powerful winds of particles and radiation that strike their surroundings, before their ...

Image: Starbursting in the galaxy M82

Feb 03, 2014

(Phys.org) —Messier 82 (M82), the galaxy in which the nearest supernova in decades recently exploded, also is the closest galaxy that is undergoing a rapid burst of star formation, known as a starburst. ...

'Death stars' in Orion blast planets before they even form

Mar 10, 2014

(Phys.org) —The Orion Nebula is home to hundreds of young stars and even younger protostars known as proplyds. Many of these nascent systems will go on to develop planets, while others will have their planet-forming ...

Recommended for you

SpaceX launches supplies to space station (Update)

11 hours ago

The SpaceX company returned to orbit Friday, launching fresh supplies to the International Space Station after more than a month's delay and setting the stage for urgent spacewalking repairs.

Quest for extraterrestrial life not over, experts say

12 hours ago

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Sun emits a mid-level solar flare

12 hours ago

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...

Impact glass stores biodata for millions of years

14 hours ago

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

The importance of plumes

14 hours ago

The Hubble Space Telescope is famous for finding black holes. It can pick out thousands of galaxies in a patch of sky the size of a thumbprint. The most powerful space telescope ever built, the Hubble provided ...

Continents may be a key feature of Super-Earths

16 hours ago

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

User comments : 0

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...