Scientists One Step Closer to Forecasting 'Clear Skies' for Astronauts

Aug 17, 2005
Scientists One Step Closer to Forecasting 'Clear Skies' for Astronauts

Scientists funded by NASA have made big strides in learning how to forecast "all clear" periods, when severe space weather is unlikely. The forecasts are important because radiation from particles from the sun associated with large solar flares can be hazardous to unprotected astronauts, airplane occupants and satellites.

Image: Scientists study the complex patterns of solar magnetic field lines to predict storms, which is not always reliable. This new method combines computer models with images of the active solar surface and atmosphere (corona) from the TRACE (shown) and SOHO spacecraft. Credit: NASA/LMSAL.

"We have a much better insight into what causes the strongest, most dangerous solar flares, and how to develop forecasts that can predict an 'all clear' for significant space weather, for longer periods," said Dr. Karel Schrijver of the Lockheed Martin Advanced Technology Center (ATC), Palo Alto, Calif. He is lead author of a paper about the research published in the Astrophysical Journal.

Solar flares are violent explosions in the atmosphere of the sun caused by the sudden release of magnetic energy. Like a rubber band twisted too tightly, stressed magnetic fields in the sun’s atmosphere (corona) can suddenly snap to a new shape. They can release as much energy as one, 10 billion megaton nuclear bomb.

Predicting space weather is a complicated problem. Solar forecasters focus principally on the complexity of solar magnetic field patterns to predict solar storms. This method is not always reliable, because solar storms require additional ingredients to occur. It has long been known large electrical currents must be present to power flares.

Insight into the causes of the largest solar flares came in two steps. "First, we discovered characteristic patterns of magnetic field evolution associated with strong electrical currents in the solar atmosphere," said ATC's Dr. Marc DeRosa, co-author of the paper. "It is these strong electrical currents that drive solar flares."

Subsequently, the authors discovered the regions most likely to flare had new magnetic fields merge into them that were clearly out of alignment with the existing field. This emerging field from the solar interior appears to induce even more current as it interacts with the existing field.

The team also found flares do not necessarily occur immediately upon the emergence of a new magnetic field. Apparently the electrical currents must build up over several hours before the fireworks start. Predicting exactly when a flare will happen is like studying avalanches. They occur only after enough snow built up. Once the threshold is reached, the avalanche can happen anytime by processes not yet completely understood.

"We found the current-carrying regions flare two to three times more often than the regions without large currents," Schrijver said. "Also, the average flare magnitude is three times greater for the group of active regions with large current systems than for the other group."

The researchers made the discovery by comparing data about magnetic fields on the sun’s surface to the sharpest extreme-ultraviolet images of the solar corona. The magnetic maps were from the Michelson Doppler Imager (MDI) instrument on board Solar and Heliospheric Observatory (SOHO) spacecraft. SOHO is operated under a cooperative mission between the European Space Agency and NASA.

The corona images were from the NASA Transition Region and Coronal Explorer spacecraft (TRACE). The team also used computer models of a three-dimensional solar magnetic field without electrical currents based on SOHO images. Differences between images and models indicated the presence of large electrical currents.

"This is a result that is more than the sum of two individual missions," said Dr. Dick Fisher, Director of NASA's Sun-Solar System Connection Division. "It's not only interesting scientifically, but has broad implications for society."

Source: NASA

Explore further: Observing the onset of a magnetic substorm

add to favorites email to friend print save as pdf

Related Stories

How the sun caused an aurora this week

Aug 22, 2014

On the evening of Aug. 20, 2014, the International Space Station was flying past North America when it flew over the dazzling, green blue lights of an aurora. On board, astronaut Reid Wiseman captured this ...

Two dynamos drive Jupiter's magnetic field

Aug 21, 2014

(Phys.org) —Superlatives are the trademark of the planet Jupiter. The magnetic field at the top edge of the cloud surrounding the largest member of the solar system is around ten times stronger than Earth's, ...

Recommended for you

Observing the onset of a magnetic substorm

12 hours ago

Magnetic substorms, the disruptions in geomagnetic activity that cause brightening of aurora, may sometimes be driven by a different process than generally thought, a new study in the Journal of Geophysical Research: Space Ph ...

We are all made of stars

15 hours ago

Astronomers spend most of their time contemplating the universe, quite comfortable in the knowledge that we are just a speck among billions of planets, stars and galaxies. But last week, the Australian astronomical ...

ESA video: The ATV-5 Georges Lemaitre loading process

15 hours ago

This time-lapse video shows the ATV-5 Georges Lemaitre loading process and its integration on the Ariane 5 launcher before its transfer and launch to the International Space Station from Europe's Spaceport in Kourou, French ...

Raven soars through first light and second run

17 hours ago

Raven, a Multi-Object Adaptive Optics (MOAO) science demonstrator, successfully saw first light at the Subaru Telescope on the nights of May 13 and 14, 2014 and completed its second run during the nights ...

Titan's subsurface reservoirs modify methane rainfall

17 hours ago

(Phys.org) —The international Cassini mission has revealed hundreds of lakes and seas spread across the icy surface of Saturn's moon Titan, mostly in its polar regions. These lakes are filled not with water ...

User comments : 0