Alice falls into a black hole: Acceleration and quantum entanglement

Aug 13, 2005

Consider that Alice and Bob are two observers at rest separated by a long distance. Each of them has a measuring device that detects, respectively, two different quantum systems. The state of the joint system is said to be maximally entangled if, for many copies of the state, any measurement that Alice makes is completely determined by Bob's and vice versa.

This upcoming publication by I. Fuentes-Schuller and R. B. Mann will appear in Physical Review Letters.

What would happen to their entanglement if Alice fell into a black hole and Bob stayed safely outside? We can model this situation by considering Alice to be stationary and Rob (formerly Bob) to be uniformly accelerated with respect to Alice. We found that although the entanglement between them is reduced due to Rob's acceleration, it remains nonzero as long as Rob's acceleration is not infinite.

It has long been known that an accelerated observer detects a thermal bath of particles whereas an observer at rest sees only a vacuum. Known as the Unruh effect, it is this that causes the degradation in the entanglement measured by Alice and Rob. Our results are a first step in understanding how relativistic effects modify quantum information, and they imply that different observers detect different degrees of entanglement.

This has important consequences in quantum teleportation between relatively accelerated parties, since entanglement is the main resource in this task.

The abstract
Two observers determine the entanglement between two free bosonic modes by each detecting one of the modes and observing the correlations between their measurements. We show that a state which is maximally entangled in an inertial frame becomes less entangled if the observers are relatively accelerated. This phenomenon, which is a consequence of the Unruh effect, shows that entanglement is an observer-dependent quantity in non-inertial frames. In the high acceleration limit, our results can be applied to a non-accelerated observer falling into a black hole while the accelerated one barely escapes. If the observer escapes with infinite acceleration, the state's distillable entanglement vanishes.

More information on Perimeter may be found on-line at .

Source: Perimeter Institute for Theoretical Physics

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

The latest fashion: Graphene edges can be tailor-made

7 hours ago

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Infrared imaging technique operates at high temperatures

7 hours ago

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming ...

Recommended for you

Researchers use oxides to flip graphene conductivity

1 hour ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Engineering self-assembling amyloid fibers

2 hours ago

Nature has many examples of self-assembly, and bioengineers are interested in copying or manipulating these systems to create useful new materials or devices. Amyloid proteins, for example, can self-assemble ...

Nanoshuttle wear and tear: It's the mileage, not the age

7 hours ago

As nanomachine design rapidly advances, researchers are moving from wondering if the nanomachine works to how long it will work. This is an especially important question as there are so many potential applications, ...

Researchers make magnetic graphene

7 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.