Alice falls into a black hole: Acceleration and quantum entanglement

Aug 13, 2005

Consider that Alice and Bob are two observers at rest separated by a long distance. Each of them has a measuring device that detects, respectively, two different quantum systems. The state of the joint system is said to be maximally entangled if, for many copies of the state, any measurement that Alice makes is completely determined by Bob's and vice versa.

This upcoming publication by I. Fuentes-Schuller and R. B. Mann will appear in Physical Review Letters.

What would happen to their entanglement if Alice fell into a black hole and Bob stayed safely outside? We can model this situation by considering Alice to be stationary and Rob (formerly Bob) to be uniformly accelerated with respect to Alice. We found that although the entanglement between them is reduced due to Rob's acceleration, it remains nonzero as long as Rob's acceleration is not infinite.

It has long been known that an accelerated observer detects a thermal bath of particles whereas an observer at rest sees only a vacuum. Known as the Unruh effect, it is this that causes the degradation in the entanglement measured by Alice and Rob. Our results are a first step in understanding how relativistic effects modify quantum information, and they imply that different observers detect different degrees of entanglement.

This has important consequences in quantum teleportation between relatively accelerated parties, since entanglement is the main resource in this task.

The abstract
Two observers determine the entanglement between two free bosonic modes by each detecting one of the modes and observing the correlations between their measurements. We show that a state which is maximally entangled in an inertial frame becomes less entangled if the observers are relatively accelerated. This phenomenon, which is a consequence of the Unruh effect, shows that entanglement is an observer-dependent quantity in non-inertial frames. In the high acceleration limit, our results can be applied to a non-accelerated observer falling into a black hole while the accelerated one barely escapes. If the observer escapes with infinite acceleration, the state's distillable entanglement vanishes.

More information on Perimeter may be found on-line at www.perimeterinstitute.ca .

Source: Perimeter Institute for Theoretical Physics

Explore further: Mirror-image forms of corannulene molecules could lead to exciting new possibilities in nanotechnology

add to favorites email to friend print save as pdf

Related Stories

Ahead of Emmys, Netflix already winning online

48 minutes ago

Even if it doesn't take home any of the major trophies at Monday's Emmy Awards, Netflix will have already proven itself the top winner in one regard: Internet programming.

US warns shops to watch for customer data hacking

48 minutes ago

The US Department of Homeland Security on Friday warned businesses to watch for hackers targeting customer data with malicious computer code like that used against retail giant Target.

SpaceX rocket explodes during test flight

1 hour ago

A SpaceX rocket exploded in midair during a test flight, though no one was injured, as the company seeks to develop a spacecraft that can return to Earth and be used again.

Official says hackers hit up to 25,000 US workers

1 hour ago

The internal records of as many as 25,000 Homeland Security Department employees were exposed during a recent computer break-in at a federal contractor that handles security clearances, an agency official said Friday.

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

User comments : 0