Study discovers how beetle shells harden

Aug 05, 2005

Kansas State University researchers think their discovery of the enzyme involved in the hardening of a beetle's exoskeleton or cuticle could lead not only to better pest control, but also help create similar strong, lightweight materials for use in aircraft and armor.

After a beetle first molts, its exoskeleton is soft and hydrated. Somehow, it dries out and forms a hard, stiff exoskeleton. Since the 1940s, scientists have wondered which enzyme among several possible candidates was involved in the hardening process.

The K-State researchers have found that by knocking out an enzyme called laccase-2, cuticle tanning, the process of hardening and pigmentation, can be prevented in the red flour beetle, Tribolium castaneum.

A paper, to be released the week of Aug. 1 in the Proceedings of the National Academy of Sciences, presents the research results. The K-State researchers are Yasuyuki Arakane, research associate in biochemistry; Subbaratnam Muthukrishnan, professor of biochemistry; Richard Beeman, adjunct professor of entomology; Michael Kanost, professor and head of the department of biochemistry; and Karl Kramer, adjunct professor emeritus of biochemistry.

Kramer said K-State researchers wanted to find out what happens between the times when the cuticle is soft and when it is hard. They studied the cuticle's composition and how the components interacted to give it stiffness, flexibility and lightness. The main components in the cuticle are proteins and chitin, which also are found in crustaceans and other invertebrates.

The researchers knew one of two classes of oxidative enzymes, tyrosinases or laccases, is likely responsible for catalyzing the exoskeleton's hardening by cross-linking cuticular proteins, Kanost said.

"When we knocked out tyrosinase, everything was normal," Kramer said. "When we knocked out laccase-2, we prevented tanning from taking place."

When the laccase-2 gene was not expressed, the newly formed cuticle remained soft and white instead of becoming hard and dark-colored. These results indicated which protein was responsible for the hard shell's formation, Kanost said.

The identification of laccase-2 as the catalyst for cuticle tanning opens up possibilities of targeting this protein as a way of weakening the beetle's physical defenses against mechanical, chemical and biological injuries, Muthukrishnan said. Better insecticides could be developed as a result of having a more insect-specific target like laccase-2, Kramer said.

"Gaining knowledge about a molecular process required for insect development, but absent from humans and other vertebrate animals, such as cuticle tanning, may be useful for developing new, bio-rational methods for controlling pest insect populations," Kanost said.

Armed with this new information, a number of practical applications are possible. Materials based on the chemistry of the insect exoskeleton could be developed to make lightweight materials for aircraft and military armor, Kramer said.

"I sometimes speculate that we might help K-State coach Bill Snyder develop better football helmets and shoulder pads for his players," he said.

Collaborative research with scientists at the University of Kansas is in the beginning stages to analyze quantitatively the mechanical properties of insect cuticles and to perform cuticle protein cross-linking experiments that are catalyzed by insect laccase, Kramer said. KU scientists will test the strength of the synthetic cross-linked biopolymers that are created. This could be used for the development of strong, lightweight materials.

Both Beeman and Kramer also work at the Grain Marketing and Production Research Center, Agricultural Research Service, United States Department of Agriculture, in Manhattan.

This research has been supported by a grant from the National Science Foundation.

Source: Kansas State University

Explore further: World's largest solar boat on Greek prehistoric mission

add to favorites email to friend print save as pdf

Related Stories

First in-situ images of void collapse in explosives

1 hour ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

NASA maps Typhoon Matmo's Taiwan deluge

1 hour ago

When Typhoon Matmo crossed over the island nation of Taiwan it left tremendous amounts of rainfall in its wake. NASA used data from the TRMM satellite to calculate just how much rain fell over the nation.

Recommended for you

Local education politics 'far from dead'

17 hours ago

Teach for America, known for recruiting teachers, is also setting its sights on capturing school board seats across the nation. Surprisingly, however, political candidates from the program aren't just pushing ...

First grade reading suffers in segregated schools

17 hours ago

A groundbreaking study from the Frank Porter Graham Child Development Institute (FPG) has found that African-American students in first grade experience smaller gains in reading when they attend segregated schools—but the ...

Violent aftermath for the warriors at Alken Enge

17 hours ago

Denmark attracted international attention in 2012 when archaeological excavations revealed the bones of an entire army, whose warriors had been thrown into the bogs near the Alken Enge wetlands in East Jutland ...

Why aren't consumers buying remanufactured products?

19 hours ago

Firms looking to increase market share of remanufactured consumer products will have to overcome a big barrier to do so, according to a recent study from the Penn State Smeal College of Business. Findings from faculty members ...

Expecting to teach enhances learning, recall

20 hours ago

People learn better and recall more when given the impression that they will soon have to teach newly acquired material to someone else, suggests new research from Washington University in St. Louis.

User comments : 0