Sensor could detect concealed weapons without x-rays

Aug 01, 2005

A new sensor being patented by Ohio State University could be used to detect concealed weapons or help pilots see better through rain and fog.
Unlike X-ray machines or radar instruments, the sensor doesn't have to generate a signal to detect objects – it spots them based on how brightly they reflect the natural radiation that is all around us every day.

There is always a certain amount of radiation – light, heat, and even microwaves – in the environment. Every object – the human body, a gun or knife, or an asphalt runway – reflects this ambient radiation differently.

Paul Berger, professor of electrical and computer engineering and physics at Ohio State and head of the team that is developing the sensor, likened this reflection to the way glossy and satin-finish paints reflect light differently to the eye.

Once the sensor is further developed, it could be used to scan people or luggage without subjecting them to X-rays or other radiation. And if the sensor were embedded in an airplane nose, it might help pilots see a runway during bad weather.

The Ohio State sensor isn't the only ambient radiation sensor under development, but it is the only one Berger knows of that is compatible with silicon – a feature that makes it relatively inexpensive and easy to work with.

Berger describes the sensor in the current issue of the journal IEEE Electron Device Letters. His coauthors include Niu Jin, who performed this work for his doctorate at Ohio State and is now at the University of Illinois at Urbana-Champaign; Ronghua Yu and Sung-Yong Chung, both graduate students at Ohio State; Phillip E. Thompson of the Naval Research Laboratory; and Patrick Fay of the University of Notre Dame.

Berger said that the new sensor grew out of his team's recent invention of a device called a tunnel diode that transmits large amounts of electricity through silicon.

He was reading about another team's ambient radiation sensor when he realized that their device worked like one of his diodes -- only in reverse.

“It's basically just a really bad tunnel diode,” he explained. “I thought, heck, we can make a bad diode! We made lots of them back when we were figuring out how to make good ones.”

As it turns out, a really bad tunnel diode can be a really good sensor.

Diodes are one-way conductors that typically power amplifiers for devices such as stereo speakers. Berger's diode is unique because it is compatible with mainstream silicon, so computer chip makers could manufacture it cheaply and integrate it with existing technology easily.

The new sensor is essentially one of these tunnel diodes with a strong short circuit running backwards and very little tunneling current running forwards.

Thompson prepared the films of layered semiconductor material, and the Ohio State team fabricated and tested the sensors.

The way engineers measure the effectiveness of such sensors is to draw a line graph charting the amount of current passing through them. Then they measure the curvature of the line at the point where the current is zero. A steep curve indicates that a sensor is working well, so the higher this so-called “curvature coefficient” is, the better.

In the laboratory, prototypes of the Ohio State sensor averaged a curvature coefficient of 31. While one other research team has produced a sensor with a coefficient of 39, that sensor is made of antimony – an exotic metal that is hard to work with and not directly compatible with the silicon circuit that surrounds the sensor element, Berger pointed out.

“So our raw sensor performance isn't quite as good, but our ultimate performance should be superior because you could integrate our device directly with any conventional microchip readout circuitry that you wanted to build,” he said.

The team that is making the antimonide sensor has succeeded in combining it with a camera system; the pictures look a lot like X-ray images, with bodies and clothing appearing as dim outlines and metal objects such as guns standing out in sharp relief.

That camera system has performance issues that Berger thinks could be solved with his silicon-compatible design. Still, the image has inspired him to think big about where his work could go in the future. Combat pilots, for instance, could potentially use this technology to stealthily identify other aircraft as friend or foe.

“If you got a fast enough response and a high-resolution image, I wonder if you might be able tell one kind of aircraft from another without revealing your location to the enemy,” he said.

The National Science Foundation and the Office of Naval Research funded this work.

Links: IEEE Electron Device Letters

Source: Ohio State University

Explore further: Researchers develop a way to observe spin in a portion of a cell cycle

add to favorites email to friend print save as pdf

Related Stories

Few friends for shy kangaroos

2 minutes ago

Kangaroo social networks could provide insight into the evolution of human personality differences.

Large-surface light-emitting plastic film

10 minutes ago

Based on OLED technology and implemented by means of a printing machine, this method developed by VTT Technical Research Centre of Finland Ltd provides an opportunity to create patterned and flexible light-emitting ...

A single target for microRNA regulation

12 minutes ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

Recommended for you

Squeezing out new science from material interfaces

6 hours ago

With more than five times the thermal conductivity of copper, diamond is the ultimate heat spreader. But the slow rate of heat flow into diamond from other materials limits its use in practice. In particular, ...

The dark side of cosmology

10 hours ago

It's a beautiful theory: the standard model of cosmology describes the universe using just six parameters. But it is also strange. The model predicts that dark matter and dark energy – two mysterious entities ...

Studying effects of target 'tents' on NIF

11 hours ago

A systematic study of the effects on National Ignition Facility (NIF) implosions of the ultra-thin mounting membranes that support target capsules inside NIF hohlraums was reported by LLNL researchers in ...

Mathematicians model fluids at the mesoscale

11 hours ago

When it comes to boiling water—or the phenomenon of applying heat to a liquid until it transitions to a gas—is there anything left for today's scientists to study? The surprising answer is, yes, quite ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.