Single molecule is in driver's seat of molecular machine

Jul 30, 2005

While the human body has plenty of specialized molecular motors and machines powering the mechanical work necessary for cells to function properly, scientists themselves face many hurdles as they try to create their own molecular machines in the laboratory.

The downsides of conventional molecular machines are that they are driven as an ensemble, by external light or chemistry, for example, and they are big -- made up of many molecules. These factors make these machines difficult to control.

In a theoretical paper published in the journal Physical Review Letters, two Northwestern University chemists have shown how molecular machines can be driven individually (relying on only one molecule) by applying an electric current that creates an internal energy source.

"People envision using molecular machines for computing techniques, sensors, bioengineering and solar cells, for example," said Tamar Seideman, professor of chemistry, who led the research team. "Molecular machines have unique functions and properties that are different from macroscopic machines, not only and not primarily because they are of the nanoscale. Rather, they use truly molecular features such as their energy level structure, their dynamics and their response to external stimuli.

"The many beautiful examples already in the literature include analogues of mechanical devices that operate on the molecular scale, such as shuttles, brakes, ratches, turnstiles and rotors. For some applications, such as drug delivery, it doesn't matter that the molecules are randomly oriented, but the majority of applications require the molecular machines to be driven individually in a coherent and controllable manner."

In their proposed molecular machine, Seideman and Chao-Cheng Kaun, a post-doctoral fellow in Seideman's lab, place a small carbon molecule (C60), known as a fullerene or "buckyball," in between two gold electrodes. (This is called a molecular junction.) When an electric current is run through the electrodes, the electrons transfer energy to the molecule, causing the molecule to vibrate and creating an internal energy source.

Essentially, the buckyball oscillates between the electrodes, as if on an invisible spring. Because the conductivity of this tiny junction depends strongly on the location of the buckyball between the electrodes, the current oscillates with time at the frequency of the C60 oscillations. The spontaneous oscillating current translates into an oscillating electromagnetic field, so the fullerene junction becomes a nanoscale generator of a radiation field -- something not demonstrated before.

Because the single molecule can be driven individually the resulting motion can be controlled, giving an advantage to such a molecular machine.

"The results are very exciting," said Seideman. "Since we understand the processes that produce the movement we can control the dynamics and hence hope to make use of this tiny molecular motor. We are encouraged by the rapid progress of experimental methods of making little molecular junctions of this type."

Source: Northwestern University

Explore further: New 'topological insulator' could lead to superfast computers

add to favorites email to friend print save as pdf

Related Stories

Single laser stops molecular tumbling motion instantly

Sep 02, 2014

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

'Zombie' bacteria are nothing to be afraid of

Aug 28, 2014

A cell is not a soap bubble that can simply pinch in two to reproduce. The ability to faithfully copy genetic material and distribute it equally to daughter cells is fundamental to all forms of life. Even ...

Scientists fold RNA origami from a single strand

Aug 14, 2014

RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, many complicated shapes can be fabricated by this technique. Unlike existing methods for folding DNA ...

Recommended for you

WEGA fusion experiment passed on to the USA

12 hours ago

The small WEGA fusion device at Max Planck Institute of Plasma Physics (IPP) in Greifswald is being handed over to the University of Illinois in Urbana-Champaign. The "Wendelstein-Experiment in Greifswald ...

Researchers design plasmonic cavity-free nanolaser

13 hours ago

(Phys.org) —A team of researchers at Imperial College in London has designed a new type of laser, one that could be made much smaller than today's models because it would be cavity-free. In their paper ...

Uncovering the forbidden side of molecules

Sep 21, 2014

Researchers at the University of Basel in Switzerland have succeeded in observing the "forbidden" infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives ...

User comments : 0